Poliedros de Newton e singularidades de polinômios / Newton polyhedra and singularities of polynomials

Neste trabalho, estudamos a relação que existe entre o número de Milnor de um polinômio cômodo ou seja, a soma dos números de Milnor dos pontos singulares isolados deste polinômio, com seu número de Newton. Este número é sempre menor ou igual ao número de Newton e a igualdade entre os números é obtida sempre que o polinômio cômodo possui parte principal Newton não-degenerada no infinito / In this work, we study the relation between the Milnor number of a polynomial cômodo ie. the sum of Milnor numbers of isolated singular points of polynomial, with the Newton number. This number is always lower than or equal to the Newton number and equality between the numbers is obtained when the polynomial has non-degenerate newtonian principal part at the infinity

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-10082011-140945
Date29 July 2011
CreatorsJorge Alberto Coripaco Huarcaya
ContributorsMarcelo José Saia, Roberta Godoi Wik Atique, José Antonio Seade Kuri
PublisherUniversidade de São Paulo, Matemática, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0158 seconds