Os métodos incrementais pertencem a uma classe de métodos iterativos que divide o conjunto de dados em subconjuntos ordenados, e que atualiza a imagem ao processar cada subconjunto (sub-iterações). Isso acelera a convergência das reconstruções, e imagens de qualidade são obtidas em menos iterações. No entanto, a cada sub-iteração é necessário calcular os operadores de projeção e retroprojeção, resultando no custo computacional de ordem O(n3) para a reconstrução de imagens de dimensão × . Por outro lado, algumas alternativas baseadas na interpolação em uma grade regular no espaço de Fourier ou em transformadas rápidas não-uniformes, dentre outras ideias, foram desenvolvidas a fim de aliviar esse custo computacional. Além disso, diversas abordagens foram bem sucedidas em acelerar o cálculo das iterações de algoritmos clássicos, mas nenhuma havia sido utilizada em conjunto com os métodos incrementais. Neste trabalho é proposta uma nova abordagem em que a técnica de transformada rápida de Fourier não uniforme (NFFT) é utilizada nas sub-iterações de métodos incrementais com o objetivo de efetuar de forma eficiente os cálculos numericamente mais intensos: a projeção e a retroprojeção, resultando em métodos incrementais com complexidade O(n2 log n ). Os métodos propostos são aplicados à tomografia por radiação síncrotron e os resultados da pesquisa mostram um bom desempenho. / Incremental methods belong to a class of iterative methods that divide the data set into ordered subsets, and which update the image when processing each subset (sub-iterations). It accelerates the reconstruction convergence and quality images are obtained in fewer iterations. However, it is necessary to compute the projection and backprojection operators in each sub-iteration, resulting in the computational cost of O(n3) flops for × images. On the other hand, some alternatives based on interpolation over a regular grid on the Fourier space or on nonequispaced fast transforms, among other ideas, were developed in order to alleviate the computational cost. In addition, several approaches substantially speed up the computation of the iterations of classical algorithms, but the incremental methods had not been benefited from these techniques. In this work, a new approach is proposed in which the nonequispaced fast Fourier transform (NFTT) is used in each subiteration of incremental methods in order to perform the numerically intensive calculations efficiently: the projection and backprojection, resulting in incremental methods with complexity O(n2 log n ). The proposed methods are applied to the synchrotron radiation tomography and the results show a good performance.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-10112017-101543 |
Date | 09 June 2017 |
Creators | Camila de Lima |
Contributors | Elias Salomão Helou Neto, Alvaro Rodolfo de Pierro, Moacir Antonelli Ponti, Jose Hiroki Saito |
Publisher | Universidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds