Este trabalho apresenta uma arquitetura de hardware, baseada em FPGA (Field-Programmable Gate Array) e com multi-câmeras, para o problema de localização e mapeamento simultâneos - SLAM (Simultaneous Localization And Mapping) aplicada a sistemas robóticos embarcados. A arquitetura é composta por módulos de hardware altamente especializados para a localização do robô e para geração do mapa do ambiente de navegação em tempo real com features extraídas de imagens obtidas diretamente de câmeras CMOS a uma velocidade de 30 frames por segundo. O sistema é totalmente embarcado em FPGA e apresenta desempenho superior em, pelo menos, uma ordem de magnitude em relaçãoo às implementações em software processadas por computadores pessoais de última geração. Esse desempenho deve-se à exploração do paralelismo em hardware junto com o processamento em pipeline e às otimizações realizadas nos algoritmos. As principais contribuições deste trabalho são as arquiteturas para o filtro de Kalman estendido - EKF (Extended Kalman Filter) e para a detecção de features baseada no algoritmo SIFT (Scale Invariant Feature Transform). A complexidade para a implementaçãoo deste trabalho pode ser considerada alta, uma vez que envolve uma grande quantidade de operações aritméticas e trigonométricas em ponto utuante e ponto fixo, um intenso processamento de imagens para extração de features e verificação de sua estabilidade e o desenvolvimento de um sistema de aquisição de imagens para quatro câmeras CMOS em tempo real. Adicionalmente, foram criadas interfaces de comunicação para o software e o hardware embarcados no FPGA e para o controle e leitura dos sensores do robô móvel. Além dos detalhes e resultados da implementação, neste trabalho são apresentados os conceitos básicos de mapeamento e o estado da arte dos algoritmos SLAM com visão monocular e estéreo / This work presents a hardware architecture for the Simultaneous Localization And Mapping (SLAM) problem applied to embedded robots. This architecture, which is based on FPGA and multi-cameras, is composed by highly specialized blocks for robot localization and feature-based map building in real time from images read directly from CMOS cameras at 30 frames per second. The system is completely embedded on an FPGA and its performance is at least one order of magnitude better than a high end PC-based implementation. This result is achieved by investigating the impact of several hardwareorientated optimizations on performance and by exploiting hardware parallelism along with pipeline processing. The main contributions of this work are the architectures for the Extended Kalman Filter (EKF) and for the feature detection system based on the SIFT (Scale Invariant Feature Transform). The complexity to implement this work can be considered high, as it involves a significant number of arithmetic and trigonometric operations in oating and fixed-point format, an intensive image processing for feature detection and stability checking, and the development of an image acquisition system from four CMOS cameras in real time. In addition, communication interfaces were created to integrate software and hardware embedded on FPGA and to control the mobile robot base and to read its sensors. Finally, besides the implementation details and the results, this work also presents basic concepts about mapping and state-of-the-art algorithms for SLAM with monocular and stereo vision.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-31032008-142731 |
Date | 30 January 2008 |
Creators | Vanderlei Bonato |
Contributors | Eduardo Marques, Glauco Augusto de Paula Caurin, Carlos Raimundo Erig Lima, Philippe Olivier Alexandre Navaux, Jun Okamoto Junior |
Publisher | Universidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds