Return to search

Estudo dos mecanismos envolvidos na separação e ruptura simultâneas de biomassa algal pelo uso da tecnologia de eletroflotação por corrente alternada / Study of the mechanisms involved in the separation and simultaneous rupture of algal biomass by use of alternating current electrocoagulation technology

CARVALHO NETO, R. G. Estudo dos mecanismos envolvidos na separação e ruptura simultâneas de biomassa algal pelo uso da tecnologia de eletroflotação por corrente alternada. 2013. 113 f. Dissertação (Mestrado em Engenharia Civil: Saneamento Ambiental ) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2013. / Submitted by Marlene Sousa (mmarlene@ufc.br) on 2015-03-27T11:27:37Z
No. of bitstreams: 1
2013_dis_rgcarvalhoneto.pdf: 2609126 bytes, checksum: 4483a62080d93f1766884884660a85b6 (MD5) / Approved for entry into archive by Marlene Sousa(mmarlene@ufc.br) on 2015-03-31T14:35:37Z (GMT) No. of bitstreams: 1
2013_dis_rgcarvalhoneto.pdf: 2609126 bytes, checksum: 4483a62080d93f1766884884660a85b6 (MD5) / Made available in DSpace on 2015-03-31T14:35:37Z (GMT). No. of bitstreams: 1
2013_dis_rgcarvalhoneto.pdf: 2609126 bytes, checksum: 4483a62080d93f1766884884660a85b6 (MD5)
Previous issue date: 2013-11-08 / Among the various steps for microalgae transformation in biodiesel, the harvesting and cell disruption processes are particularly important, since technologies available for this purpose have usually high costs, undermining the energy recovery viability. This work studied the mechanisms involved in the simultaneous harvesting and cell disruption of microalgae using electroflotation by alternating current (EFCA), as well as to investigate the system capacity on nutrients removal from waste stabilization ponds effluents. Coagulation/flocculation tests were performed using synthetic (FeCl3 e Al2(SO4)3) and organic (Tanfloc SG e SL) coagulants to evaluate the chemically assisted sedimentation of the algal biomass. The EFCA reactor was designed to operate in batch, using non-consumable electrodes and low electrical power, and evaluated the harvesting potential in the presence and absence of coagulants. After this, experiments were performed varying the electrode frequency to verify the optima condition for simultaneous harvesting and cell disruption of microalgae. The system capacity in terms of nutrients removal was also investigated as well as the mechanisms involved. It was possible to remove algae biomass both using chemically assisted sedimentation and EFCA. However, the electrolytic technology is more attractive, not only for the turbidity and chlorophyll-a efficiencies founded, but also because there is no apparent need of coagulants, which makes the process cheaper and facilitates the microalgae biomass reuse. The EFCA was even able to promote the cell disruption of microalgae and the liberated lipids were able to attach to the algal biomass separated by the process. A lipid yield of 14 % in terms of dry matter was found, even when a complex matrix from waste stabilization ponds was used. The study of the mechanisms involved in EFCA revealed the good system ability to generate hydrogen gas, which contributes to microalgae harvesting and can make the process even more sustainable under an energetic perspective. Furthermore, the generation of oxidant species was found which helps the harvesting and cell disruption process. The effect of different vibration frequencies in the lipid yield was not apparent. We sought to elucidate the mechanisms involved on total phosphorus removal, and probably the removal was due to iron formation in the process, in which the concentrations were close to 2.5 mg/L after 70 minutes batch time. In terms of ammonia removal, possibly the mechanism was an indirect oxidation by excess of hypochlorous acid to form nitrogen gas, which helps the separation process. The use of microalgae from stabilization ponds showed a potential alternative for the processes traditionally used nowadays for microalgae production (photobioreactor and raceway ponds), and showed to be attractive to all processes that demand microalgae harvesting. / Dentre as diversas etapas para a transformação de microalgas em biodiesel, os processos de separação e a ruptura celular dessa biomassa são particularmente importantes, uma vez que as tecnologias disponíveis para este fim apresentam elevados custos, comprometendo a viabilidade do aproveitamento energético. Este trabalho teve como objetivo geral estudar os mecanismos envolvidos na separação e ruptura simultâneas de biomassa algal pelo uso da tecnologia de eletroflotação por corrente alternada (EFCA), com objetivo principal de extrair o conteúdo lipídico da biomassa algal, assim como verificar o potencial da tecnologia na remoção de nutrientes de efluentes de lagoas de estabilização. Foram realizados ensaios de coagulação/floculação em jar test com coagulantes sintéticos (FeCl3 e Al2(SO4)3) e orgânicos (Tanfloc SG e SL) com o objetivo de avaliar a decantação quimicamente assistida na separação de biomassa algal. Foi desenvolvido um reator de EFCA para operar em batelada, utilizando-se eletrodos não consumíveis e baixa potência elétrica. Foi avaliado o seu potencial de separação com e sem o auxílio dos mesmos coagulantes utilizados nos testes de jarro e, em seguida, buscou-se variar as frequências de operação do conjunto de eletrodos com o objetivo de verificar a condição ótima para separação e rompimento celular das microalgas. Foi também avaliada a capacidade desta metodologia na remoção de nutrientes presentes nos efluentes e elucidar os mecanismos envolvidos. Foi possível a remoção de biomassa algal tanto por meio da decantação quimicamente assistida quanto pela EFCA, sendo que a segunda é mais atrativa não somente pelas eficiências de remoção de turbidez e clorofila-a encontradas, como também pela não necessidade aparente de utilização de coagulantes, o que traz economia ao processo e facilita a reutilização da biomassa algal. A EFCA mostrou-se ainda capaz de promover com eficiência o rompimento celular das microalgas e fazer com que os lipídeos liberados se aderissem à biomassa algal separada pelo processo. Foi possível alcançar um rendimento lipídico de até 14% em peso de massa seca, mesmo os estudos tendo sido realizados com uma matriz diversa de microalgas proveniente das lagoas de estabilização. O estudo dos mecanismos envolvidos revelou a boa capacidade do sistema em gerar gás hidrogênio, o qual além de ajudar na separação das microalgal pode tornar futuramente o processo energeticamente sustentável. Além disso, foi verificada a geração de espécies oxidantes que ajudam tanto o processo de separação quanto possivelmente de ruptura celular. O efeito de diferentes frequências de vibração nos rendimentos lipídicos encontrados não foi aparente. Buscou-se ainda a elucidação dos mecanismos de remoção de fósforo total, o que provavelmente se deu pela formação de ferro durante o processo, cujos valores ficaram na ordem de 2,5 mg/L depois de 70 minutos de batelada. Já para a remoção de amônia, possivelmente o mecanismo foi de oxidação indireta da amônia através do excesso de ácido hipocloroso como a forma predominante de conversão da mesma em nitrogênio gasoso, o qual ajuda no processo de separação. A utilização de microalgas diretamente de lagoas de estabilização mostrou-se uma potencial alternativa aos processos de obtenção de biomassa tradicionalmente utilizados (fotobiorreator e lagoas do tipo raceway), sendo que a tecnologia proposta se mostrou atrativa para todos processos que demandem separação algal

Identiferoai:union.ndltd.org:IBICT/oai:www.repositorio.ufc.br:riufc/11180
Date08 November 2013
CreatorsCarvalho Neto, Riamburgo Gomes de
ContributorsCosta, Mayara Carantino, Santos, André Bezerra dos
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFC, instname:Universidade Federal do Ceará, instacron:UFC
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds