Sparse Bayesian Learning For Joint Channel Estimation Data Detection In OFDM Systems

Bayesian approaches for sparse signal recovery have enjoyed a long-standing history in signal processing and machine learning literature. Among the Bayesian techniques, the expectation maximization based Sparse Bayesian Learning(SBL) approach is an iterative procedure with global convergence guarantee to a local optimum, which uses a parameterized prior that encourages sparsity under an evidence maximization frame¬work. SBL has been successfully employed in a wide range of applications ranging from image processing to communications. In this thesis, we propose novel, efficient and low-complexity SBL-based algorithms that exploit structured sparsity in the presence of fully/partially known measurement matrices. We apply the proposed algorithms to the problem of channel estimation and data detection in Orthogonal Frequency Division Multiplexing(OFDM) systems. Further, we derive Cram´er Rao type lower Bounds(CRB) for the single and multiple measurement vector SBL problem of estimating compressible vectors and their prior distribution parameters. The main contributions of the thesis are as follows:
We derive Hybrid, Bayesian and Marginalized Cram´er Rao lower bounds for the problem of estimating compressible vectors drawn from a Student-t prior distribution. We derive CRBs that encompass the deterministic or random nature of the unknown parameters of the prior distribution and the regression noise variance. We use the derived bounds to uncover the relationship between the compressibility and Mean Square Error(MSE) in the estimates. Through simulations, we demonstrate the dependence of the MSE performance of SBL based estimators on the compressibility of the vector.
OFDM is a well-known multi-carrier modulation technique that provides high spectral efficiency and resilience to multi-path distortion of the wireless channel
It is well-known that the impulse response of a wideband wireless channel is approximately sparse, in the sense that it has a small number of significant components relative to the channel delay spread. In this thesis, we consider the estimation of the unknown channel coefficients and its support in SISO-OFDM systems using a SBL framework. We propose novel pilot-only and joint channel estimation and data detection algorithms in block-fading and time-varying scenarios. In the latter case, we use a first order auto-regressive model for the time-variations, and propose recursive, low-complexity Kalman filtering based algorithms for channel estimation. Monte Carlo simulations illustrate the efficacy of the proposed techniques in terms of the MSE and coded bit error rate performance.
• Multiple Input Multiple Output(MIMO) combined with OFDM harnesses the inherent advantages of OFDM along with the diversity and multiplexing advantages of a MIMO system. The impulse response of wireless channels between the Nt transmit and Nr receive antennas of a MIMO-OFDM system are group approximately sparse(ga-sparse),i.e. ,the Nt Nr channels have a small number of significant paths relative to the channel delay spread, and the time-lags of the significant paths between transmit and receive antenna pairs coincide. Often, wire¬less channels are also group approximately-cluster sparse(ga-csparse),i.e.,every ga-sparse channel consists of clusters, where a few clusters have all strong components while most clusters have all weak components. In this thesis, we cast the problem of estimating the ga-sparse and ga-csparse block-fading and time-varying channels using a multiple measurement SBL framework. We propose a bouquet of novel algorithms for MIMO-OFDM systems that generalize the algorithms proposed in the context of SISO-OFDM systems. The efficacy of the proposed techniques are demonstrated in terms of MSE and coded bit error rate performance.

Identiferoai:union.ndltd.org:IISc/oai:etd.iisc.ernet.in:2005/3997
Date January 2015
CreatorsPrasad, Ranjitha
ContributorsMurthy, Chandra R
Source SetsIndia Institute of Science
Languageen_US
Detected LanguageEnglish
TypeThesis
RelationG26743

Page generated in 0.0132 seconds