Return to search

Laboratory measurements of static and dynamic elastic properties in carbonate

The fact that many of the giant hydrocarbon reservoirs, such as the Ghawar field in Saudi Arabia and the Grosmont formation in Alberta, are formed from carbonates make these rocks important research topics. Compressional and shear wave velocities (at 1 MHz) and the quasi-static strains of thirty seven carbonate rock samples were measured as functions of saturating fluid and confining pressure. Furthermore, P- and S-wave velocities of the saturated samples were measured at constant differential pressure of 15 MPa. The quasi-static strains of the samples under jacketed and unjacketed conditions were also simultaneously acquired. The lithology, mineralogy, porosity and pore type and size distribution of each sample were obtained using a combination of thinsection and scanning electron microscopy, helium porosimetry and mercury intrusion porosimetry. Due to the lack of closing microcracks and compliant pores in low porosity samples, the travel times show slight changes with the confining pressure. Whereas the high porosity samples show remarkable reduction of travel time with the increase of confining pressure in both P- and S-wave. The samples show no changes in travel time with increasing confining pressure under constant differential pressure, and this behavior is taken to be representative of full saturation of the sample and hence used as a measure of quality control. The comparisons of Biot, Gassmann, squirt-Biot and squirt-Gassmann model predictions with the measured water saturated velocities show that the squirt mechanism is not active on all the studied samples. Biot mechanism is likely to be the principle dispersion mechanism in these samples. For S-wave velocities, Gassmanns model consistently over-predict the saturated at low pressure and closely fit the measured velocities at high pressure, whereas, Biot model over-predicts the saturated velocities in most of the studied samples.
The strains over the horizontal axis are higher than the vertical axis suggesting that the majority of the compliant pores and crack-like pores are oriented almost in direction parallel to the length of the sample. The static bulk modulus is always lower than dynamic one for all measured samples. The measured grain bulk modulus is reasonably close to the bulk modulus of the constituent mineral. / Geophysics

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:AEU.10048/908
Date06 1900
CreatorsBakhorji, Aiman M
ContributorsSchmitt, Doug (Physics), Sacchi, Mauricio (Physics), Chow, Kim (Physics), Zonneveld, John-Paul (Earth and Atmospheric Science), Batzle, Michael (Geophysics, Colorado School of Mines)
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format25327327 bytes, application/pdf

Page generated in 0.0024 seconds