Return to search

Pretreatment and hydrolysis of recovered fibre for ethanol production

Energy utilization is a determining factor for the standards of living around the world, and the current primary source of energy is fossil fuels. A potential source of liquid fuels that could ease the strain caused by diminishing petroleum resources is bioethanol.
Effective exploitation of biomass materials requires a pretreatment to disrupt the lignin and cellulose matrix. The pretreatment utilized for this research was oxygen delignification, which is a standard process stage in the production of bleached chemical pulp.
The model substrate utilized as a feedstock for bioethanol was recovered fibre. An analysis of the substrates digestibility resulted in a hexose yield of approximately 23%, which justified the need for an effective pretreatment.
An experimental design was performed to optimize the delignification conditions by performing experiments over a range of temperature, caustic loadings, and reaction times. Equations were developed that outline the dependence of various response parameters on the experimental variables. An empirical model that can predict sugar concentrations from enzymatic hydrolysis based on the Kappa number, enzyme loading, and initial fibre concentration was also developed.

A study of hydrolysis feeding regimes for untreated recovered fibre (87 Kappa), pretreated recovered fibre (17 Kappa), and bleached pulp (6 Kappa) showed that the batch feeding regime offers reduced complexity and high sugar yields for lower Kappa substrates.
In order to evaluate the possibility of lignin recovery, the pH of delignification liquor was reduced by the addition of CO₂ and H₂SO₄, resulting in up to 25% lignin yield. An experiment that looked at effect of post-delignification fibre washing on downstream hydrolysis found that a washing efficiency of approximately 90% is required in order to achieve a hexose sugar yield of 85%.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVAU./1369
Date11 1900
CreatorsRuffell, John
PublisherUniversity of British Columbia
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Format1405590 bytes, application/pdf

Page generated in 0.0024 seconds