Return to search

The narrow escape problem : a matched asymptotic expansion approach

We consider the motion of a Brownian particle trapped in an arbitrary bounded two or three-dimensional domain, whose boundary is reflecting except for a small absorbing window through which the particle can escape. We use the method of matched asymptotic expansions to calculate the mean first passage time, defined as the time taken for the Brownian particle to escape from the domain through the absorbing window. This is known as the narrow escape problem. Since the mean escape time diverges as the window shrinks, the calculation is a singular perturbation problem. We extend our results to include N absorbing windows of varying length in two dimensions and varying radius in three dimensions. We present findings in two dimensions for the unit disk, unit square and ellipse and in three dimensions for the unit sphere. The narrow escape problem has various applications in many fields including finance, biology, and statistical mechanics.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVAU./1428
Date11 1900
CreatorsPillay, Samara
PublisherUniversity of British Columbia
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Format927419 bytes, application/pdf

Page generated in 0.0021 seconds