Return to search

Aspects of SU(2|4) symmetric field theories and the Lin-Maldacena geometries

Gauge/gravity duality is an important tool for learning about strongly coupled gauge theories. This thesis explores a set of examples of this duality in which the field theories have SU(2|4) supersymmetry and discrete sets of vacuum solutions. Specifically, we use the duality to propose Lagrangian definitions of type IIA Little String Theory on S⁵ as double-scaling limits of the Plane-Wave Matrix Model, maximally supersymmetric Yang-Mills theory
on R x S² and N=4 supersymmetric Yang-Mills theory on R×S³/Zk. We find the supergravity solutions dual to generic vacua of the Plane-Wave Matrix Model and maximally supersymmetric Yang-Mills theory on R×S².
We use the supergravity duals to calculate new instanton amplitudes for the Plane-Wave Matrix Model at strong coupling. Finally, we study a natural coarse-graining of the vacua, and find that the associated geometries are singular. We define an entropy functional that vanishes for regular geometries, is non-zero for singular geometries, and is maximized by the thermal state.

Date11 1900
Creatorsvan Anders, Greg
PublisherUniversity of British Columbia
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Format878456 bytes, application/pdf

Page generated in 0.0027 seconds