Inertial navigation system assisted visual localization

With recent advancements in Global Positioning Systems (GPS), localization systems
are now typically equipped with a GPS. However, in a large variety of environments and
real-world applications, GPS-based localization systems are not practical. This research
tackles such a problem and illustrates the idea of fusing a camera and an inertial navigation
system (INS) to create a dead reckoning localization system. The original purpose
of the localization system is for a pipe inspection robot, but the proposed concepts can
be readily applied to any environment where there is a wall in close proximity.
The proposed sensor system can determine motions with up to six degrees of freedom
using a camera and an INS. The system must assume a geometry for the wall, such as
a at surface, a wall in a hallway, or the round surface of the inside of a pipe. If the
geometry of the wall is unknown then another sensor, such as a laser range nder, can be
added to measure the range and estimate the overall shape of the wall.
The localization system uses a combination of optical ow and image registration to
obtain information about six degrees of freedom from a wall with little to no features.
The INS provides an estimated motion for the camera system. The estimation of the
motion is used by the optical ow algorithm to reduce the computational load signi cantly
and by the image registration to decrease the likelihood of the algorithm diverging.
The system is validated using numerical simulation and experiments. The experiments
were conducted on a test platform constructed speci cally in this research project to
simulate the motion of a free-swimming robot inside a pipe. The simulator uses accurate
ii
position sensors to measure the exact location of the proposed localization system and
compare it with the results obtained from the latter. Both the numerical simulation
results and the results from the simulator are in agreement with reading of the localization
system developed in this research.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVAU.2429/33423
Date05 1900
CreatorsKrys, Dennis
PublisherUniversity of British Columbia
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation

Page generated in 0.0014 seconds