Return to search

Microfluidics-assisted investigation of T-lymphocyte Migration in lymph node relevant chemokine gradients

T-lymphocytes (T-cells) trafficking in the lymph nodes (LNs) is key for T-cells activation and their effector functions in adaptive immune responses. T-cells enter the LNs through high endothelial venules (HEVs) and interact with dendritic cells (DCs) for cognate antigens in the T-cell zone (TCZ). After scanning the TCZ for antigens, T-cells leave the LNs through efferent lymphatic vessel. CCR7 and its ligands, CCL19 and CCL21 are involved in the recruitment and compartmentalization of T-cells in LNs. However, their specific role(s) in mediating T-cells migration in LNs sub-regions remain unclear. In addition, the mechanism behind the passage of T-cells from the TCZ to the abluminal side of medullary sinuses (for their exit through medullary sinuses) is not well understood. Here, I hypothesize that different CCL19 and CCL21 fields in LNs sub-regions, orchestrate T-cells sub-regional migration in LNs..
In this study, I examined the CCL19 and CCL21 distribution profiles in mouse LNs sub-regions by immunofluoroscence staining and confocal microscopy. Using microfluidic devices that can flexibly configure well-defined single and co-existing chemical concentration gradients, I quantitatively analyzed the migration of activated human blood T-cells in LNs relevant CCL19 and CCL21 fields. The results suggested a novel CCL19 and CCL21 based combinatorial guiding mechanism for T-cells migration in different LNs sub-regions. In particular, this mechanism operates in the TCZ periphery region to guide T-cells migration away from the TCZ. Furthermore, the CCL19 and CCL21 fields mimicking the region beyond the TCZ toward the medulla result in disturbed chemotaxis, which prevents T-cells from being attracted back to the TCZ. Taken together, this microfluidics-based in vitro study shows the coordinated T-cells migration in different single and combined CCL19 and CCL21 fields, leading to interesting new insights into the guiding mechanisms for T-cells trafficking in LNs sub-regions.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:MWU.1993/23247
Date25 March 2011
CreatorsANDALUR NANDAGOPAL, Saravanan
ContributorsLin, Francis (Physics and Astronomy) Levin, David (Biosystems Engineering), Diehl-Jones, William L (Biological Sciences)Morrison, Jason (Biosystems Engineering) Ren, Carolyn (Mechanical and Mechatronics Engineering, University of Waterloo)
PublisherPLoS ONE
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Detected LanguageEnglish

Page generated in 0.0016 seconds