Return to search

A high protein diet at the upper end of the Acceptable Macronutrient Distribution Range (AMDR) leads to kidney glomerular damage in normal female Sprague-Dawley rats

In setting the AMDR for protein at 10-35% of daily energy, the Institute of Medicine acknowledged a lack of data regarding the safety of long-term intakes. The current study assessed the impact of chronic (17 months) protein consumption at the upper end of the AMDR on renal function, histology, and inflammation.
Using plant and animal whole protein sources, female Sprague-Dawley rats (70 days old; n=8-11 at 4, 8, 12, or 17 mo.) were randomized to either a normal (NP; 15% of energy) or high protein (HP; 35% of energy) diet. Egg albumen and skim milk replaced carbohydrates in the HP diet. Diets were balanced for energy, fat, vitamins and minerals, and offered ad libitum. Renal function was analyzed by creatinine clearance and urinary protein levels. Glomerular hypertrophy, glomerulosclerosis and tubulointerstitial fibrosis were assessed on kidney sections. Kidney disease progression was determined by the measurement of transforming growth factor beta-1 (TGF-β1) and renal inflammation by the measurement of chemokines monocyte chemoattractant protein-1 (MCP-1) and regulated upon activation normal T-cell expressed and secreted (RANTES).
Rats consuming the HP compared to NP diet had ~17% higher kidney weights (P<0.0001) and ~4.8 times higher proteinuria (P<0.0001). There was a trend towards higher creatinine clearance with HP (P=0.055). Consistent with this, HP compared to NP rats had ~22% larger glomeruli (P<0.0001) and ~33% more glomerulosclerosis (P=0.0003). The HP diet had no significant effect on tubulointerstitial fibrosis and renal TGF-β1 levels and did not result in higher renal levels of MCP-1 and RANTES. In fact, per mg renal protein, HP rats had ~16% lower MCP-1 (P<0.0001) and ~34% lower levels of RANTES (P<0.0001) than NP. The absence of an increase in cytokine levels may be a reflection of the moderate changes in renal pathology observed in rats offered HP diets.
These data in normal female rats suggest that protein intakes at the upper end of the AMDR are detrimental to kidney health in the long-term. While modest, this may have implications for individuals whose kidney function is compromised, especially given the prevalence of those unaware of their kidney disease within North America. / October 2007

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:MWU.anitoba.ca/dspace#1993/2834
Date18 September 2007
CreatorsWakefield, Andrew
ContributorsAukema, Harold (Human Nutritional Sciences), House, James (Animal Science) Smyth, Donald (Internal Medicine/Pharmacology)
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_US
Detected LanguageEnglish
Format2287340 bytes, application/pdf

Page generated in 0.0067 seconds