Return to search

STOCHASTIC ADC WITH RANDOM U-QUADRATIC DISTRIBUTED REFERENCE VOLTAGES TO UNIFORMLY DISTRIBUTE COMPARATORS TRIP POINTS

This thesis presents a new architecture of stochastic Analog-to-Digital converter (ADC). A standard Stochastic ADC uses comparator random offset as the trip point while all the comparators have the same reference voltages. Since the offset of a basic comparator depends on a number of independent random variables, the offset will follow randomly distributed Gaussian function. The input dynamic range of this standard stochastic ADC is ±?. For 90nm technology ? value is around 153mV. A technique is presented that converts overall transfer function of a stochastic ADC i.e. Gaussian distribution into almost uniformly distribution with a wider range. With the proposed technique, an input dynamic range of ± 153mV and ENOB of 4bits of standard stochastic ADC are increased to variable input dynamic range of ±250mV to ±500mV and ENOB of 6bits.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:NSHD.ca#10222/21911
Date23 April 2013
CreatorsCeekala, Mithun
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish

Page generated in 0.0019 seconds