Return to search

Logistic Growth Models for Estimating Vaccination Effects In Infectious Disease Transmission Experiments

Veterinarians often perform controlled experiments in which they inoculate animals with infectious diseases. They then monitor the transmission process in infected animals. The aim of such experiments can be to assess vaccine effects. The fitting of individual-level models (ILMs) to the infectious disease data, typically achieved by means of Markov Chain Monte Carlo (MCMC) methods, can be computationally burdensome. Here, we want to see if a vaccination effect can be identified using simpler regression-type models rather than the complex infectious disease models. We examine the use of various logistic growth curve models, via a series of simulated experiments in which the underlying true model is a mechanistic model of infectious disease spread. We want to investigate whether a vaccination effect can be identified when only partial epidemic curves are observed, and to assess the performance of these models when experiments are run with various sets of observational times.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OGU.10214/5314
Date14 January 2013
CreatorsCai, Longyao
ContributorsDeardon, Rob
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Rightshttp://creativecommons.org/licenses/by/2.5/ca/

Page generated in 0.0019 seconds