Return to search

Sedimentary structural indicators of Arctic terrestrial and aquatic processes

Annually and subannually laminated lacustrine sediments potentially contain a wide range of information that can be interpreted for paleoenvironmental reconstructions. These laminae are produced by the physical and biological processes that operate in the lake and in the surrounding terrestrial environment. However, identification of the influences that control laminae production may not be straightforward, and other processes may subtly influence the overall depositional sequence. This thesis examines two different depositional environments on Colin Archer Peninsula, Devon Island, Canada, with the objective of identifying the factors that influence subannual sediment deposition and how the resultant sedimentary structures can be used as indicators of paleoenvironmental conditions.
In proglacial Lake R, clastic sediment deposition is controlled primarily by subannual meteorological conditions. Periods of positive air temperature or large rainfall events produce discernable laminae that, when combined, form a varve sequence. However, overarching geomorphic controls influence the delivery of sediment to the lake and may reduce or enhance the hydrometeorological signal contained in the varves.
An additional influence for calibration of the varve record to meteorological observations is the role that melt season thermal inversions have on temperature extrapolation in the High Arctic. Meteorological stations at sea level may not be representative of the surrounding region, thereby reducing the accuracy of vertical temperature estimation. Investigation of the inversions in the central Canadian High Arctic demonstrated that melt season inversions are common and increased inversion frequency may potentially have influenced enhanced glacial melt since the late 1980s, with implications for proglacial lake sediment transport and deposition.
In coastal Lake J, late Holocene sediments record a relatively unusual accumulation of microbially induced sedimentary structures (MISS). Such a record has not been previously described in the circum-Arctic, although they are known to exist elsewhere. These sediments are produced by the interaction between clastic sedimentation and cyanobacterial growth and production. Although chronological constraint could not be assigned with certainty to the record, statistical study of the laminated sequence suggested a dominant pattern that is plausibly annual. A heuristic model of annual sediment accumulation was developed in order to explore the potential for quasi-annual paleoenvironmental interpretations. / Thesis (Ph.D, Geography) -- Queen's University, 2008-05-22 09:55:12.184

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/1220
Date28 May 2008
CreatorsChutko, Krystopher John
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
Format10066144 bytes, application/pdf
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0025 seconds