Return to search

Novel robotic mechanisms for upper-limb rehabilitation and assessment

Robotic rehabilitation and assessment of the human upper-limb following stroke is currently limited in part by the inability of robots to replicate natural motion. In particular, motion of the shoulder girdle is usually neglected, despite the fact that the shoulder girdle is necessary to stabilize and orient the upper-limb during activities of daily living. Without direct control of the shoulder girdle, it is not possible to monitor or prevent a patient from making compensatory movements, which inhibits functional recovery, nor is there a means to properly regain strength and coordination. The more the robot is able to realistically mimic upper-limb motion, the more able the robot will be to assist with true functional movement training, which gives the patient the best chance of motor recovery. To address this issue, a new adjustable robotic exoskeleton called MEDARM is proposed for rehabilitation and assessment of the shoulder complex. MEDARM provides independent control of six degrees of freedom of the upper-limb: two at the sternoclavicular joint, three at the glenohumeral joint and one at the elbow.

A key design feature of the new robot is an innovative curved track mechanism actuated by a cable-drive transmission system. To facilitate a performance evaluation of this new mechanism, a planar version of MEDARM was designed. A full prototype of this planar robot was constructed and several fundamental metrics, including friction, inertia, and compliance, were used to test its mechanical performance. Additionally, the functionality of the robot was examined using preliminary data recorded during a standard reaching task, and by implementing some basic rehabilitation algorithms. This thesis describes the design of MEDARM and its planar counterpart in detail and the performance evaluation of the prototype is presented. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2008-08-13 21:19:14.335

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/1344
Date14 August 2008
CreatorsBall, Stephen Joseph
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
Format13729728 bytes, application/pdf
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0025 seconds