Return to search

Transient High-Temperature Prestress Relaxation of Unbonded Prestressing Tendons for use in Concrete Slabs

Unbonded post-tensioned (UPT) flat plate concrete slabs have seen widespread use in multi-storey office and condominium buildings since the 1960s. The popularity of these systems can be attributed to various economic and structural benefits, including reductions in slab thickness, storey height, building mass, and excellent deflection control over large spans. The “inherent fire resistance” of these systems is often quoted as a key additional benefit as compared with competing structural systems. Such statements are apparently based largely on satisfactory results from large scale standard fire resistance tests performed on UPT slabs during the 1960s and on experience from real fires in UPT buildings. However, much remains unknown about the true structural behaviour of continuous multiple bay UPT slabs in real building fires. For instance, relatively little data exist on the effects of elevated temperature on cold drawn prestressing steel under realistic, sustained service stress levels. The primary objective of this thesis is to provide a greater understanding of the high-temperature performance (predominantly related to prestress relaxation) of prestressing steel used in UPT flat plate slabs. A computational model is developed, extending previous research by others, to predict transient high temperature stress relaxation (i.e., prestress loss) for a tendon in a typical UPT multiple span flat plate concrete slab under transient heating and cooling. The computational model is validated by comparison against a series of novel high temperature experiments on locally-heated, stressed, and restrained prestressing tendons with realistic as-built configurations. Reasonable agreement between measured and predicted prestress losses is observed, although some refinement of the model’s input parameters may be required. Test data also indicate that the most crucial fire scenario on a UPT concrete slab may be localized heating rather than a global, fully developed fire. The model is subsequently used to predict the capacity in flexure and punching shear of a UPT flat plate structure under various spatial and temporal heating regimes. The results highlight the need for particular care in the construction of UPT slabs to ensure adequate, robust concrete cover for structural fire safety. / Thesis (Master, Civil Engineering) -- Queen's University, 2009-09-24 18:27:25.559

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/5218
Date26 September 2009
CreatorsGALES, JOHN
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
Format2014492 bytes, application/pdf
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0027 seconds