Return to search

Gear Fault Detection Using Non-Contact Magnetic Rotation Position Sensors

This thesis is an investigation of possible applications for a low cost non-contact magnetic rotational position sensor. A single stage gearbox operating spur gears was instrumented with these sensors along with typical optical encoders. These rotational position devices were used independently to measure gearbox Transmission Error (TE) during operation. Basic filtering techniques were used to condition the TE so that localized faults were observable. Characteristic feature extraction on the TE using RMS, Kurtosis and Crest Factor was used to quantify gearbox dynamics. These features were able to measure dynamic changes in gearbox health, such as wearing in the gears or the progression of a fault resulting in full tooth failure. These sensor attributes are ideal for machine condition monitoring applications where catastrophic failure can be forewarned by incipient fault detection. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2010-10-12 17:21:13.125

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/6130
Date13 October 2010
CreatorsTaylor, Michael
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0019 seconds