Return to search

Reduction of Tertiary Benzamides to Benzaldehydes by an in situ-Generated Schwartz Reagent (Cp2Zr(H)Cl); Formal Synthesis of Lysergic Acid 2. Ru-Catalyzed Amide-Directed Aryl C-H, C-N and C-O Bond Functionalizations: C-B Formation, C-C Suzuki Cross Coupling and Hydrodemethoxylation

Chapter 2 of the thesis describes a highly efficient in situ method for the reduction of amides to aldehydes and aryl O-carbamates to phenols and other transformations involving hydrozirconations. The method, as a three-component-type reaction, involves in situ generation of the Schwartz reagent (Cp2Zr(H)Cl) from Cp2ZrCl2 and the reductant, LiAlH(O-t-Bu)3, and immediate reaction with a substrate. Substrates include aliphatic and aromatic tertiary amides which are reduced to aldehydes, aryl O-carbamates which are reduced to phenols, and alkynes which undergo other transformations via hydrozirconation. Compared to prior methods, this method has advantage in that reagents are inexpensive and stable, reaction times are short, and reaction temperatures are generally conveniently at room temperature. The use of the in situ method described herein instead of the requirement for the synthesis of the commercially available Schwartz reagent is estimated to provide more than 50% reduction in cost.
Chapter 3 of the thesis describes the discovery and development of efficient and regioselective Ru-catalyzed amide-directed C-H, C-N, C-O activation/C-C bond forming reactions, ester-directed C-O activation/C-C bond forming reaction, and amide-directed C-O activation/hydrodemethoxylation reactions under a simple RuH2(CO)(PPh3)3/toluene catalytic system. Of these, the amide-directed C-H activation/cross coupling reaction proceeds well but uniquely on furan 3-amide substrates while the ester-directed C-O activation is effective on the 2-MeO-1-naphthoic acid methyl ester. On the other hand, the amide-directed C-N and C-O activation/coupling reactions are broadly applicable on benzamides and naphthamides. All of these achievements of directed C-H, C-N, C-O activation/coupling reactions complement and may supercede the DoM (directed ortho metalation)-cross coupling strategy, and establish the catalytic base-free DoM-cross coupling process at non-cryogenic temperature as a convenient, economical and green alternative. The new catalytic amide-directed ortho-hydrodemethoxylation reaction has potential value in links to aromatic electrophilic substitution and DoM chemistries. Furthermore, a new borylation reaction via Ru-catalyzed amide-directed C-H activation/C-B bond forming process is also reported herein. / Thesis (Ph.D, Chemistry) -- Queen's University, 2010-12-21 11:12:35.564

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/6671
Date25 August 2011
CreatorsZHAO, YIGANG
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0025 seconds