Return to search

Modulation of short- and long-term plasticity in the rat auditory cortex

Plasticity of synapses is not static across the lifespan. As the brain matures and ages, the ability of neurons to undergo structural and functional change becomes more limited. Further, there are a number of modulatory factors that influence the expression of synaptic plasticity. Here, three approaches were taken to examine and manipulate plasticity in the auditory thalamocortical system of rats. Using an in vivo preparation, long-term potentiation (LTP) and paired pulse (PP) responses were used as measures of long- and short-term plasticity, respectively. First, the effect of intracortical zinc application in the primary auditory cortex (A1) on LTP was examined. Following theta burst stimulation (TBS) of the medial geniculate nucleus (MGN), juvenile and middle-age rats, but not young adults, showed greater levels of LTP with zinc application relative to age-matched control animals. Next, PP responses were examined between rats reared in unaltered acoustic conditions and those reared in continuous white noise (WN) from postnatal day (PD) 5 to PD 50-60 (i.e., subjected to patterned sound deprivation). Rats reared in WN demonstrated less PP depression relative to controls, indicating that WN rearing alters short-term thalamocortical synaptic responses. Furthermore, control males showed no change in PP response following LTP induction, indicating a postsynaptic locus of LTP, whereas increased PP depression following LTP induction was seen in WN animals, suggestive of a presynaptic involvement in LTP. Finally, differences in plasticity between male and female rats were investigated, and the result of early WN exposure on both sexes was examined. Males and females did not show consistent differences in LTP expression; however WN exposure appeared to affect LTP of females less than their male counterparts. PP responses were then compared between WN-reared males and females, and no difference was found. This indicates that short-term plastic properties of auditory thalamocortical synapses between the sexes do not differ, even though plasticity on a longer time scale following sensory deprivation does indicate some difference. Together, the experiments summarized here identify some of the important factors that contribute to the regulation of short- and long-term synaptic plasticity in the central auditory system of the mammalian brain. / Thesis (Master, Neuroscience Studies) -- Queen's University, 2012-10-30 16:01:28.796

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/7621
Date30 October 2012
CreatorsRosen, Laura Gillian
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0022 seconds