Return to search

The Effect of Prenatal Ethanol Exposure on DNA Methylation and TGF-β1, SHH and Wnt3a Transcription Regulating Factors Within the Developing Hippocampus of the Guinea Pig

One of the most frequently reported deficits seen in individuals with Fetal Alcohol Spectrum Disorder (FASD) is impairments in learning and memory, which is likely attributed to the teratogenic effects of ethanol on the developing hippocampus. TGF-β (transforming growth factor-β), hedgehog and Wnt signaling pathways have been identified as high probability candidate pathways associated with brain deficits seen in FASD. Increasing evidence indicates that ethanol may induce changes in DNA methylation that could alter transcription regulating factors within signaling pathways critical in brain development. The purpose of this study was to test the hypotheses that prenatal ethanol exposure during i) the first trimester-equivalent period, or ii) throughout the entire gestational period induces changes in DNA methylation and alters the transcription/translation of TGF-β1, SHH (sonic hedgehog) and Wnt3a within the developing hippocampus. Pregnant Dunkin-Hartley-strain guinea pigs were assigned to one of three groups: ethanol (4 g/kg maternal body weight), isocaloric-sucrose/pair-feeding, or no treatment. Embryonic telencephalon tissue (which gives rise to the hippocampus) and fetal hippocampus were collected at gestational day (GD) 23 or GD 65, respectively. GD 23 ethanol-exposed and nutritional control embryos exhibited decreased crown-rump and head lengths. GD 65 ethanol-exposed fetuses exhibited decreased body and brain weights compared with the control groups. Ethanol exposure during the first trimester-equivalent period, but not during the entire gestational period, resulted in an increase in global DNA methylation. First trimester-equivalent ethanol exposure did not alter TGF-β1, SHH and Wnt3a gene expression within the GD 23 telencephalon. However, ethanol exposure throughout the entire pregnancy led to an increase in the expression of all three genes within the GD 65 hippocampus. No change in TGF-β1 protein was seen in the hippocampus of ethanol-treated fetuses. Post-translationally modified (ptm) SHH, but not unmodified SHH protein, was decreased in the hippocampus of ethanol-exposed fetuses. A decrease in unmodified, but not ptm Wnt3a protein, was observed in both ethanol-exposed and nutritional control hippocampus. These results suggest that prenatal ethanol exposure may affect hippocampal development through alterations in i) DNA methylation as shown at early gestation and ii) the expression of transcription regulating factors, especially SHH, as shown at term. / Thesis (Master, Pharmacology & Toxicology) -- Queen's University, 2012-12-03 12:36:33.035

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/7673
Date03 December 2012
CreatorsSONDY, YVONNE
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0021 seconds