Return to search

Multiphase flow and chemical reactor thermodynamics for hydrolysis and thermochemical production

Current techniques of hydrogen production (primarily reformation of fossil fuels) are
unsustainable, releasing CO2 into the atmosphere, as well as consuming limited reserves
of fossil fuels. The copper-chlorine cycle is a promising thermochemical process which
can cost-effectively produce hydrogen with less environmental impact. In this thesis, new
predictive formulations and experimental data are presented to improve the conversion
extent and reaction rates of the hydrolysis reactor in the Cu-Cl cycle. This reactor has
critical implications for the design, operation, and efficiency of the Cu-Cl cycle and
hydrogen production. The relatively high temperature needed to drive the reaction
requires a significant input of thermal energy. This thesis focuses on methods and
analysis to reduce the unreacted steam in the hydrolysis reactor, in order to reduce the
thermal energy input and improve the cycle’s thermal efficiency. A key outcome from
this thesis is the experimental verification of reducing the steam to copper chloride ratio
from 16:1 (past studies) to about 3:1. The results of this thesis provide key new data to
design a more efficient hydrolysis reactor that can be effectively integrated within the
Cu-Cl cycle. / UOIT

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOSHDU.10155/245
Date01 August 2012
CreatorsPope, Kevin
ContributorsNaterer, Greg F.
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.002 seconds