Return to search

Embryonic Stem Cell Extracts Possess Immune Modulatory Properties That Prevent Dendritic Cell Maturation and T Cell Activation

Embryonic stem cells (ESC) possess immune privileged properties and have the capacity to modulate immune activation. ESCs can persist across allogeneic immunological barriers, prevent lymphocyte proliferation in mixed lymphocyte reaction (MLR) assays and can promote graft acceptance. However, clinical application of live ESC to treat immunological disorders is not feasible as live ESC can form teratoma in-vivo. In order to harness these properties of ESCs without adverse risk to patients, we hypothesized that ESC derived extracts may retain immune modulatory properties of whole cells and therefore could be used to abrogate allo-immune responses. We found addition of ESC-extracts from human lines H1 and H9, significantly prevented T cell proliferation in allogeneic MLRs. These results were confirmed using murine J1 ESC line. In-vitro studies showed human ESC EXT were able to modulate maturation of human monocyte derived dendritic cells (DC) by suppressing up-regulation of important co-stimulatory and maturation markers CD80, HLA-DR and CD83. In addition, DCs educated in the presence of human ESC extracts significantly lost their ability to stimulate purified allogeneic T cells compared to control extract treated DCs. We also determined that ESC extracts have an independent effect on T cells. ESC extracts prevented T cell proliferation in response to anti CD3/CD28 stimulation. In MLRs, ESC derived factors significantly down-regulated IL-2 and IFN-γ expression, while up-regulating TGF-β and Foxp3 expression. Furthermore, lymphocytes and purified T cells activated with anti-CD3/CD28, ConA and PMA proliferated poorly in the presence of ESC derived factors, while proliferation in response to ionomycin was not affected. Western blot analysis indicated that ESC derived factors prevented PKC-θ phosphorylation without influencing total PKC-θ levels. Moreover, IκB-α degradation was abrogated, confirming absence of PKC-θ activity. Therefore, ESC extracts have potent immune suppressive properties and may have clinical applications in ameliorating transplant rejection and autoimmune conditions.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU-OLD./22794
Date26 April 2012
CreatorsMohib, Kanishka
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThèse / Thesis

Page generated in 0.0027 seconds