Return to search

Influence of Neuromuscular Fatigue of the Lower Limb on Postural Control and Associated Central Processes in Young and Older Adults

This thesis investigates the differential effects of muscle fatigue on center of pressure (COP) sway and associated central processes (attentional demands and sensory re-weighting) in older compared with young adults. More specifically, we first sought to determine whether the effect of muscle fatigue on unipedal stance was greater during a dual-task in older versus young adults, and second, to determine whether the effect of muscle fatigue on bipedal stance was greater in a condition with less reliable proprioceptive information in older versus young adults. Our main results show that with different muscle groups fatigued (ankle or hip) and postural tasks with varying difficulty (unipedal stance or bipedal stance on compliant surface), young adults increased their COP sway displacement and velocity with muscle fatigue, but not the associated attentional demands. When the central nervous system needed to increase the weight of the vestibular inputs due to sensory information being less reliable at the ankle joints from standing on a compliant surface (peripheral somatosensory information), COP sway displacement and velocity in young adults were greater with ankle muscle fatigue. We also found that healthy older adults were able to compensate for muscle fatigue just as well as young adults when visual information was available during a unipedal stance or when visual information was not available during a bipedal stance on a firm surface. However, when standing on a compliant surface, older adults showed a greater increase in COP sway displacement compared to young adults and increased attentional demands when visual information was not available during a bipedal stance. Our results suggest that healthy young and older adults are able to compensate for ankle muscle fatigue to limit postural control alterations during quiet standing under different conditions, and that the extent of postural control alterations largely depends on the tasks performed. The compensation strategies may be less efficient for older adults with less reliable proprioceptive information and without vision. Thus, a frailer group of older adults, with already reduced proprioception and/or reduced vision could possibly have more difficulty to efficiently use the same compensation strategies, and may be more at risk of falling when fatigued.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU.#10393/23612
Date20 December 2012
CreatorsBisson, Etienne
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThèse / Thesis

Page generated in 0.0023 seconds