Return to search

Deformed Soft Matter under Constraints

In the last few decades, an increasing number of physicists specialized in soft matter, including polymers, have turned their attention to biologically relevant materials. The properties of various molecules and fibres, such as DNA, RNA, proteins, and filaments of all sorts, are studied to better understand their behaviours and functions. Self-assembled biological membranes, or lipid bilayers, are also the focus of much attention as many life processes depend on these. Small lipid bilayers vesicles dubbed liposomes are also frequently used in the pharmaceutical and cosmetic industries. In this thesis, work is presented on both the elastic properties of polymers and the response of lipid bilayer vesicles to extrusion in narrow-channels. These two areas of research may seem disconnected but they both concern deformed soft materials. The thesis contains four articles: the first presenting a fundamental study of the entropic elasticity of circular chains; the second, a simple universal description of the effect of sequence on the elasticity of linear polymers such as DNA; the third, a model of the symmetric thermophoretic stretch of a nano-confined polymer; the fourth, a model that predicts the final sizes of vesicles obtained by pressure extrusion. These articles are preceded by an extensive introduction that covers all of the essential concepts and theories necessary to understand the work that has been done.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU./en#10393/20564
Date13 January 2012
CreatorsBertrand, Martin
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish

Page generated in 0.0019 seconds