Return to search

The Regulation of Expression of Hemokinin-1

The regulation of the immune system is complex, with many factors involved in controlling immune cell development, activation and homeostasis. These factors include neuropeptides as well as classic immunoregulatory molecules such as cytokines, chemokines and hormones. Neuropeptides and tachykinins in particular are known to be involved in immune response modulation through a cascade of events including vasodilation, plasma extravasation, the activation of immune cells, the secretion of pro-inflammatory cytokines and the recruitment of more immune cells. Furthermore, there is growing evidence that tachykinins play a role in hematopoiesis with Substance P as the proposed effector molecule. In 2000, our lab discovered a new tachykinin with remarkable structural similarity to SP and SP-like neurokinin receptor binding affinity. This molecule was designated Hemokinin-1 due to its expression in hematopoietic cells and its function in B cell development. Further gene expression analysis of HK-1 reveals a wide expression pattern although HK-1 transcripts are found predominantly in peripheral tissues while SP is mainly expressed in neuronal tissue. Based on this differential expression pattern, it has been suggested that HK-1 may act as the peripheral tachykinin and may have functions distinct from SP. In addition, given the crossreactivity of the SP antibodies to HK-1, it is important to determine whether HK-1 is the actual mediator of some functions previously attributed to SP.
In this thesis, we examine the differential expression pattern of HK-1 to determine molecular mechanisms of regulation of HK-1 transcription and ultimately provide clues to its function in the immune system. In our analysis of the HK-1 promoter, we found a major difference in the basic transcriptional control of HK-1 and SP at the level of transcription initiation and identified several transcription factors including CREB and NFκB involved in regulating TAC4 gene expression in immune cells. Data presented in this thesis also reveal that the HK-1 gene is a direct target of Early B-cell Factor, a transcription factor known to activate B cell-specific genes as well as genes involved in adipogenesis and neuronal development. Our results show EBF regulates HK-1 gene expression in differentiating B cells as well as a monocytic cell line. Our data indicate EBF may also be responsible for the high levels of HK-1 transcript in the olfactory epithelium, suggesting a bridge between the nervous system and the immune system.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/19100
Date23 February 2010
CreatorsTran, Anne H.
ContributorsPaige, Christopher J., Wu, Gillian E.
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0025 seconds