Return to search

Involvement of Reactive Metabolites in Idiosyncratic Drug Reactions

Idiosyncratic drug reactions (IDRs) represent a significant medical problem and pose a great challenge to drug development. Circumstantial evidence suggests that, in most cases, reactive metabolites of the drug are responsible. The major focus of this thesis is the identification of reactive metabolites and the synthesis of analogs required to test several hypotheses related to involvement of metabolism and covalent binding in the mechanisms of IDRs.
Minocycline is unique among tetracyclines in causing a significant incidence of a lupus-like syndrome and autoimmune hepatitis. In this study, we demonstrated that minocycline is oxidized to reactive intermediates by myeloperoxidase/H2O2/Cl-, HOCl, horseradish peroxidase/H2O2, or hepatic microsomes. When trapped with N-acetylcysteine (NAC), two adducts with protonated molecular ions at m/z 619 were isolated and analyzed by NMR. One represents attack of the aromatic D ring by NAC meta to the N, N-dimethylamino group, implying that the reactive intermediate was a quinone iminium ion. The other adduct, which was not observed when minocycline was oxidized by hepatic microsomes, indicates that the NAC is attached at the junction of the B and C rings, suggesting that the HOCl added across the double bond of the B ring leading to a reactive molecule, and then NAC displaced the chloride ion.
Nevirapine, an anti-HIV drug, is associated with idiosyncratic skin rashes in humans. The goal of this project was to investigate whether the 12-hydroxylation pathway is responsible for the skin rash. To test a part of this hypothesis, 12-trideuteronevirapine, 12-OH-NVP sulfate, and several other analogs of nevirapine were synthesized.
D-penicillamine is known to cause idiosyncratic autoimmune reactions in humans. The goal of this project was to test whether D-penicillamine covalently binds to macrophages and triggers downstream events leading to autoimmunity. To test a part of this hypothesis, D-penicillamine conjugated to biotin was synthesized.
In summary, reactive metabolites of minocycline were found that likely explain why minocycline has an IDR profile unique among the tetracyclines. In addition, analogs of nevirapine and D-penicillamine required for mechanistic studies of nevirapine and D-penicillamine-induced IDRs were synthesized. These studies provide additional support for the involvement of reactive metabolites in the mechanisms of IDRs.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/19289
Date03 March 2010
CreatorsMannargudi, Mukundan Baskar
ContributorsUetrecht, Jack
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0024 seconds