Return to search

Transcriptional Regulation of the Mouse Adrenal Cyclase Type 4 (Adcy4) in Y1 Adrenocortical Tumor Cells

Adenylyl cyclase (Adcy) is an important early effector of adrenocorticotrophin (ACTH) on the adrenal cortex; however, this enzyme consists of ten isozymes in mammalian cells and the factors governing the expression of different Adcy isozymes have not been well defined. The aim of this study is to investigate the regulation of mouse Adcy4, one of ten isozymes, in Y1 adrenocortical tumor cells and in mutant subclones derived from the Y1 cells. Adcy4 is expressed at a high level in brain but at lower levels in many other tissues including the Y1 cells. Moreover, this isozyme is specifically deficient in Y1 mutants with impaired steroidogenic factor 1 (SF1) activity. These observations support a hypothesis that Adcy4 expression is influenced by both ubiquitously expressed and tissue-specific transcription factors. My sequencing results indicate that mouse Adcy4 is highly homologous to the human and rat counterparts; its gene is located less than 1 kb downstream of Ripk3 and contains 26 exons. Primer extension and in silico analyses suggest that Adcy4 contains a TATA-less promoter and initiates transcription from multiple sites. Luciferase reporter gene assays indicate that Adcy4 promoter activity is mainly stimulated by the proximal GC-rich region but is inhibited by the first intron. This 124 bp GC-rich region is well conserved among several mammalian species and exhibits strong promoter activity in Y1 cells, which is functionally compromised in the Adcy4-deficient mutant. Within this region, three Sp1/Sp3- and one SF1-binding sites have been identified which bind the corresponding proteins Sp1 and Sp3 or SF1 in electrophoretic mobility shift assays (EMSAs). Site-directed mutagenesis reveals that the 5’-most Sp1/Sp3 site enhances Adcy4 promoter activity, whereas the middle Sp1/Sp3 and SF1 sites each repress this activity. In Y1 mutant cells, mutating the SF1 site restores Adcy4 promoter activity and knocking down SF1 with shRNA increases Adcy4 expression. All these data demonstrate that Adcy4 expression is under the control of the ubiquitous factors Sp1 and Sp3 and the tissue-specific factor SF1 and establish that SF1 is a repressor for Adcy4 promoter activity. This study is the first to demonstrate a repressor function for SF1 in certain promoter contexts.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/24451
Date20 May 2010
CreatorsRui, Xianliang
ContributorsSchimmer, Bernard P.
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0022 seconds