Return to search

Characterization of the Motion and Mixing of Droplets in Electrowetting on Dielectric Devices

The physical mechanism responsible for droplet manipulation in electrowetting on dielectric (EWOD) devices is not yet fully understood. This investigation will examine the role of capillary forces on droplet manipulation to further the physical understanding of these devices. An analytical model for the capillary force acting on a confined droplet at equilibrium is developed here. Model predictions were validated using optical measurements of the droplet interface in the vertical plane. It was found that the capillary force and interface shape predicted by the equilibrium model were over an order of magnitude more accurate than predictions from the model commonly used in EWOD investigations.
The equilibrium model was adapted to droplets with arbitrary shapes to predict droplet dynamics in EWOD devices. It was found that droplet motion could be described using the driving capillary force and frictional forces from wall shear, the contact line, and contact angle hysteresis. Comparison with experimental data shows that this model accurately predicts the effects of applied voltage and droplet aspect ratio on the transient position and velocity of droplets. This model can be used to design EWOD devices and predict the simultaneous manipulation of droplets required to meet the high throughput demands of practical applications.
A robust system for droplet monitoring must be automated before EWOD devices can be used reliably in practical applications. Although capacitance measurements have been used to automate droplet detection in EWOD devices, manual optical measurements are generally used to monitor droplet mixing. This may not be possible in high throughput applications with multiple droplets and limited optical access. Here, capacitance measurements are shown to be an accurate and repeatable means of monitoring droplet composition and real time mixing. Experiments were performed with this technique to show that mixing efficiency is better characterized by the number of translations required for full mixing, not mixing time.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/26382
Date23 February 2011
CreatorsSchertzer, Michael John
ContributorsBen Mrad, Ridha, Sullivan, Pierre E.
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0144 seconds