Return to search

Numerical Geodynamic Experiments of Continental Collision: Past and Present

Research explores deep continental lithosphere (i.e., the continental lower crust and mantle lithosphere) deformation during continental collision.

I found that depending on the composition/rheology of the crust and the amount of radiogenic heat production in the crust, three dominant modes of mantle lithosphere deformation evolve under Neoarchean-like conditions: (1) a pure-shear thickening style; (2) an imbrication style; (3) and a "flat-subduction" style. The imbrication and the flat-subduction styles result in the emplacement of "plate-like" mantle lithosphere at depths between 200 km and 325 km. The imbrication style behavior shifts to the "flat-subduction" style behavior after a crustal inversion event.

I investigated mature Phanerozoic-style collision and found that it is sensitive to mantle lithosphere density, mantle lithosphere yield stress, lower-crustal strength and to the presence of phase change-related density changes in the lower crust. The early stages of collision are accommodated by subduction of lower crust and mantle lithosphere along a discrete shear zone beneath the overriding plate. Next, the subducting lower crust and mantle lithosphere retreat from the collision zone, permitting the sub-lithospheric mantle to upwell and intrude the overriding plate. Next, the lower crust and mantle lithosphere of the overriding plate delaminate from the overlying crust. This process produces plateau-like uplift. These modeling results are interpreted in the context of available geological and geophysical observables for the Himalayan-Tibetan orogen.

I quantitatively investigated the effects that sediment deposition may have on continental lithosphere deformation during collision. In the absence of sedimentation, the early stages of collision are accommodated by subduction of lower crust and mantle lithosphere beneath the overriding plate. Next, the subducting lower crust and mantle lithosphere retreat from the collision zone. This permits the sub-lithospheric mantle to upwell and come into contact with the thickened upper crust. When sedimentation is imposed subduction-like consumption of the subducting plate remains stable.

Using numerical geodynamic models, I studied the influence of the pressure-dependence of viscosity on tectonic deformation during collision. At low activation volumes, high convergence rates, and low to moderate initial Moho temperatures the subduction style of mantle lithosphere deformation is dominant. At low activation volumes, high convergence rates, and high initial Moho temperatures distributed pure-shear style deformation occurs. At low activation volumes, low convergence rate, and moderate to high initial Moho temperatures the mantle lithosphere prefers a convective removal style of deformation. Increasing the activation volume of mantle material in either of these three cases changes the style of mantle lithosphere deformation because its viscosity increases non-linearly.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/43578
Date09 January 2014
CreatorsGray, Robert
ContributorsPysklywec, Russell
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0018 seconds