Return to search

A New Class of Cycle Inequality for the Time-Dependent Traveling Salesman Problem

The Time-Dependent Traveling Salesman Problem is a generalization of the well-known Traveling Salesman Problem, where the cost for travel between two nodes is dependent on the nodes and their position in the tour. Inequalities for the Asymmetric TSP can be easily extended to the TDTSP, but the added time information can be used to strengthen these inequalities. We look at extending the Lifted Cycle Inequalities, a large family of inequalities for the ATSP. We define a new inequality, the Extended Cycle (X-cycle) Inequality, based on cycles in the graph. We extend the results of Balas and Fischetti for Lifted Cycle Inequalities to define Lifted X-cycle Inequalities. We show that the Lifted X-cycle Inequalities include some inequalities which define facets of the submissive of the TDTS Polytope.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OWTU.10012/5543
Date January 2010
CreatorsWhite, John Lincoln
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation

Page generated in 0.0027 seconds