Return to search

Practical Coordination of Multi-Vehicle Systems in Formation

This thesis considers the cooperation and coordination of multi vehicle systems cohesively in order to keep the formation geometry and provide the string stability. We first present the modeling of aerial and road vehicles representing different motion characteristics suitable for cooperative operations. Then, a set of three dimensional cohesive motion coordination and formation control schemes for teams of autonomous vehicles is proposed. The two main components of these schemes are i) platform free high level online trajectory generation algorithms and ii) individual trajectory tracking controllers. High level algorithms generate the desired trajectories for three dimensional leader-follower structured tight formations, and then distributed controllers provide the individual control of each agent for tracking the desired trajectories. The generic goal of the control scheme is to move the agents while maintaining the formation geometry. We propose a distributed control scheme to solve this problem utilizing the notions of graph rigidity and persistence as well as techniques of virtual target tracking and smooth switching. The distributed control scheme is developed by modeling the agent kinematics as a single-velocity integrator; nevertheless, extension to the cases with simplified kinematic and dynamic models of fixed-wing autonomous aerial vehicles and quadrotors is discussed. The cohesive cooperation in three dimensions is so beneficial for surveillance and reconnaissance activities with optimal geometries, operation security in military activities, more viable with autonomous flying, and future aeronautics aspects, such as fractionated spacecraft and tethered formation flying. We then focus on motion control task modeling for three dimensional agent kinematics and considering parametric uncertainties originated from inertial measurement noise. We design an adaptive controller to perform the three dimensional motion control task, paying attention to the parametric uncertainties, and employing a recently developed immersion and invariance based scheme. Next, the cooperative driving of road vehicles in a platoon and string stability concepts in one-dimensional traffic are discussed. Collaborative driving of commercial vehicles has significant advantages while platooning on highways, including increased road-capacity and reduced traffic congestion in daily traffic. Several companies in the automotive sector have started implementing driver assistance systems and adaptive cruise control (ACC) support, which enables implementation of high level cooperative algorithms with additional softwares and simple electronic modifications. In this context, the cooperative adaptive cruise control approach are discussed for specific urban and highway platooning missions. In addition, we provide details of vehicle parameters, mathematical models of control structures, and experimental tests for the validation of our models. Moreover, the impact of vehicle to vehicle communication in the existence of static road-side units are given. Finally, we propose a set of stability guaranteed controllers for highway platooning missions. Formal problem definition of highway platooning considering constant and velocity dependent spacing strategies, and formal string stability analysis are included. Additionally, we provide the design of novel intervehicle distance based priority coefficient of feed-forward filter for robust platooning. In conclusion, the importance of increasing level of autonomy of single agents and platoon topology is discussed in performing cohesive coordination and collaborative driving missions and in mitigating sensory errors. Simulation and experimental results demonstrate the performance of our cohesive motion and string stable controllers, in addition we discuss application in formation control of autonomous multi-agent systems.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OWTU.10012/8443
Date January 2014
CreatorsBayezit, Ismail
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation

Page generated in 0.0023 seconds