Return to search

Effect of particle size and natural organic matter on the transport and fate of latex nanoparticles in saturated porous media

Colloid filtration experiments were performed using latex particles (50 nm, 110 nm and 1500 nm) in both the presence and absence of 5.0 mg/L humic acid (HAs). At low ionic strengths (1 -- 10 mM KCl), an increase in attachment efficiency (alpha) with increasing particle size was observed, which contrasts with predictions based on DLVO theory. The presence of HAs generally resulted in a decrease in alpha. Characterization experiments to better understand this behaviour included particle sizing using dynamic light scattering (DLS) and zeta potential using laser Doppler velocimetry (LDV). The particles' hydrodynamic diameters were unchanged in the presence of HAs. HAs lead to an increase in absolute zeta potential for the 50 nm and 110 nm colloids and a decrease in zeta potential for the 1500 nm particles. A discussion of the apparent deviations from Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and explanations for the observed behaviour are provided.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.100232
Date January 2007
CreatorsPelley, Andrew John.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Engineering (Department of Chemical Engineering.)
Rights© Andrew John Pelley, 2007
Relationalephsysno: 002666634, proquestno: AAIMR38492, Theses scanned by UMI/ProQuest.

Page generated in 0.0021 seconds