Return to search

Wind-driven circulation : impact of a surface velocity dependent wind stress

The use of an ocean surface velocity dependent wind stress is examined in the context of a 3-layer double-gyre quasigeostrophic wind-driven ocean circulation model. The new wind stress formulation results in a large reduction of the power input by the wind into the oceanic circulation. This wind stress is proportional to a quadratic function of Ua--u o, where Ua is the wind at 10m above the ocean surface and uo is the ocean surface current. Because the winds are typically faster than the ocean currents, the impact of the ocean surface velocity on the wind stress itself is relatively small. However, the power input is found to be greatly reduced with the new formulation. This is shown by simple scaling argument and numerical simulations in a square basin. Our results suggest that the wind power input may be as much as 35% smaller than is typically assumed. / The ocean current signature is clearly visible in the scatterometer-derived wind stress fields. We argue that because the actual ocean velocity differs from the modeled ocean velocities, care must be taken in directly applying scatterometer-derived wind stress products to the ocean circulation models. This is not to say that the scatterometer-derived wind stress is not useful. Clearly the great spatial and temporal coverage make these data sets invaluable. Our point is that it is better to separate the atmospheric and oceanic contribution to the stresses. / Finally, the new wind stress decreases the sensitivity of the solution to the (poorly known) bottom friction coefficient. The dependence of the circulation strength on different values of bottom friction is examined under the standard and the new wind stress forcing for two topographic configurations. A flat bottom and a meridional ridge case are studied. In the flat bottom case, the new wind stress leads to a significant reduction of the sensitivity to the bottom friction parameter, implying that inertial runaway occurs for smaller values of bottom friction coefficient. The ridge case also gives similar results. In the case of the ridge and the new wind stress formulation, no real inertial runaway regime has been found over the range of parameters explored.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.101117
Date January 2006
CreatorsDuhaut, Thomas H. A.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Atmospheric and Oceanic Sciences.)
Rights© Thomas H. A. Duhaut, 2006
Relationalephsysno: 002602887, proquestno: AAIMR32696, Theses scanned by UMI/ProQuest.

Page generated in 0.0019 seconds