The evolving needs of network carriers are changing the design of optical networks. In order to reduce cost, latency, and power consumption, electrical switches are being replaced with optical switching fabrics at the core of the networks. An example of such a network is an Agile All-Photonic Network (AAPN). / This thesis presents a novel device that was designed to operate as an optical switch within the context of an AAPN network. The device is a Reprogrammable Optical Phase Array (ROPA), and the design consists of applying multiple electric fields of different magnitudes across an electro-optic material in order to create a diffractive optical element. The configuration of the electric fields can change to modify the properties of the diffractive device. / Such a device has a wide range of potential applications, and two different ROPA designs are presented. Both designs are optimized to function as 1xN optical switches. The switches are wavelength tunable and have switching times on the order of microseconds. The ROPA devices consist of two parts: a bulk electro-optic crystal, and a high-voltage CMOS chip for the electrical control of the device. The design, simulation, fabrication and testing of both the electrical and optical components of the devices are presented.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.103276 |
Date | January 2007 |
Creators | Mony, Madeleine. |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Doctor of Philosophy (Department of Electrical and Computer Engineering.) |
Rights | © Madeleine Mony, 2007 |
Relation | alephsysno: 002665330, proquestno: AAINR38623, Theses scanned by UMI/ProQuest. |
Page generated in 0.0019 seconds