Return to search

Validation of a commercial Monte Carlo algorithm for stereotactic radiosurgery and stereotactic body radiation therapy

This thesis aimed to validate the Monte Carlo (MC) algorithm in BrainLab's iPlan treatment planning system, used in conjunction with stereotactic radiosurgery (SRS) mode of the Varian Novalis TX linear accelerator for clinical use. Specifically, the iPlan algorithm was "benchmarked" by comparing results obtained with a BEAMnrc model developed for the Novalis TX's SRS mode. The BEAMnrc model was obtained by modifying an existing model for a Varian linac to include the different SRS flattening filter and the high definition 120 leaf multi-leaf collimator (HD120 MLC) of the Novalis TX. Characterization of the source model used a recently published procedure to fit beam energy, source size and angular spread, and an existing BEAMnrc Monte Carlo component module (DYNVMLC) was reprogrammed to model the HD120 MLC of the Novalis TX linac. For the latter, the interleaf air gap and leaf density were adjusted such that simulations matched interleaf leakage profiles measured with film. Validation of the iPlan MC algorithm was accomplished through comparisons between both MC codes and film measurements for MLC defined fields, depth dose curves of square fields incident on heterogeneous slab phantoms, and more clinically realistic plans incident on a Lucy® stereotactic QA phantom and a Rando® head phantom. The source characterization procedure and the modeling of the HD120 MLC were successful, with subsequent simulations performing well compared to measurements of output factors, profiles in water and dose planes of MLC defined fields. Some discrepancies were observed between either MC code and film measurements, but calculations with iPlan MC and EGSnrc MC codes agreed well with each other in all cases. These results suggest that the iPlan Monte Carlo dose calculation algorithm is capable of accurately predicting radiation dose for complex fields in heterogeneous media. / Ce mémoire visait à valider l'algorithme Monte Carlo (MC) dans le cadre du système de planification de traitement iPlan de BrainLab où il est conjointement utilisé avec le mode radiochirurgical stéréostatique (SRS) de l'accélérateur linéaire Novalis TX de Varian. Plus particulièrement, l'algorithme iplan a été validé en comparant les résultats obtenus avec un modèle BEAMnrc du mode SRS de Novalis TX. Le modèle BEAMnrc a été créé en modifiant un modèle existant d'accélérateur Varian afin d'y inclure le filtre compensateur SRS et le collimateur multilames de haute définition de Novalis TX (HD120MLC). La caractérisation de la source a utilisé une procédure récente pour ajuster l'énergie, la taille et l'ouverture angulaire de la source. Par ailleurs, un module multilames de BEAMnrc existant (DYNVMLC) a été reprogrammé pour simuler le collimateur multilames de haute définition (HD120MLC). Pour ce dernier, l'écart entre les lames et la densité des lames ont été ajustés de sorte que les simulations correspondent aux profils de fuites interlames mesurées par films. La validation de l'algorithme iPlan a été réalisée par comparaisons entre les deux codes MC et des mesures de films pour des champs définis par le collimateur multilames, pour des courbes de la dose en profondeur de champs carrés administrés sur des fantômes hétérogènes et de plans plus réalistes du point de vue clinique administrés sur un fantôme stéréostatique Lucy® et un fantôme de tête Rando®. La procédure de caractérisation de la source et la modélisation du collimateur multilames (HD120MLC) ont été réussies ainsi que les simulations ultérieures correspondaient bien aux mesures des facteurs d'ouverture, des profiles dans l'eau et des distributions de dose des champs définis par le collimateur multilames. Des différences ont été observées s entre les codes MC et les mesures de films, mais les calculs avec les codes IPlan MC et EGSnc correspondaient bien dans tous les cas. Ces résultats suggèrent que l'algorithme MC de Iplan peut prédire précisément les doses de rayonnement pour des champs complexes dans des medias hétérogènes.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.110472
Date January 2012
CreatorsMilroy, Desmond
ContributorsHoracio J Patrocinio (Internal/Supervisor), Jan Peter Frans Seuntjens (Internal/Cosupervisor2)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Medical Physics Unit)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
RelationElectronically-submitted theses.

Page generated in 0.0028 seconds