Return to search

Conformational changes of polyomavirus during cell entry

Similar to other non-enveloped viruses, the mechanism of cell entry for polyomaviruses is poorly understood. The polyomavirus capsid is an icosahedron composed of 72 pentamers of the major capsid protein VP1. There is one copy of minor capsid proteins, VP2 or VP3, at the center of each pentamer. According to previous studies, polyomavirus cell entry is a multi-step process which includes: 1) VP1 binding to sialic acid (SA) on the surface of host cells, 2) interaction of VP1 with alpha4beta1 integrin and 3) subsequent cell penetration. Biochemical studies have shown that SA alters polyomavirus protease sensitivity, suggesting a conformational change. The aim of this study was to determine these conformational changes at the molecular level. Therefore, we used single particle cryo-electron microscopy to construct 3D maps of wild type (WT) murine polyomavirus, WT bound to SA, a mutant with a disrupted integrin binding site, and the mutant bound to SA. Our results reveal that in both WT and mutant viruses, a significant conformational change happens after binding with SA which is seen as an additional ring of density inside the virus. Moreover some negative densities are seen in the difference map of WT and WT bound with SA, which suggests movement of some viral proteins after binding with SA.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.111604
Date January 2008
CreatorsDolatshahi, Marjan.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Anatomy and Cell Biology.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 003164005, proquestno: AAIMR66908, Theses scanned by UMI/ProQuest.

Page generated in 0.0022 seconds