The role played by ultrahigh frequencies or ultrashort distances in the usual derivation of the Hawking effect is discussed. We demonstrate the robustness of Hawking's prediction of black-hole evaporation, by carrying out an explicit calculation, in which short-distance physics is explicitly regularized using the Pauli-Villars regularization scheme. We find that short-distance effects due to physics at small distance scales, 1/$ Lambda gg 1/T sb{H}$, where 1/$ Lambda$ is a covariantly chosen short-distance cutoff, can only contribute to the Hawking flux an amount that is exponentially suppressed by the large ratio $ Lambda$/$T sb{H}$. We argue further that this behavior is not specific to our choice of regularization, but is a generic feature of any covariant short-distance regularization. We do so by showing that no possible covariant and local counterterm exists which can contribute to the Hawking flux at late times far from the hole.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.28457 |
Date | January 1994 |
Creators | Hambli, Noureddine |
Contributors | Burgess, C. P. (advisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Doctor of Philosophy (Department of Physics.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 001425274, proquestno: NN00096, Theses scanned by UMI/ProQuest. |
Page generated in 0.0021 seconds