Electromagnetic fields generated by ocean currents and the potential for using geomagnetic data in ocean and climate studies

The ocean currents flowing through the earth's main magnetic field are known to induce secondary magnetic fields. Hence, variations in the ocean circulation induce variations in the net magnetic field. This research is aimed at exploring the potential for using geomagnetic data to study variability in ocean circulation and climate. / First, general relativity theory is used to formally establish the proper set of electromagnetic equations to be used for observers in a rotating (accelerating) frame of reference observing a medium (the ocean, in this case) with relative velocity. Extra terms due to rotation are derived and described and a generalized Schiff's charge density is shown to be potentially significant for the application to ocean circulation. / We extend the theory of electromagnetic fields generated by ocean currents. Many analytical solutions are found for idealized ocean features including sheared flow, jets, and a Stommel gyre. Results indicate that the ocean-induced magnetic fields will typically have magnitudes of 10's-100's of nT within the ocean. Outside of the ocean, the magnitudes are smaller (typically 1-10 nT) but decay on scales set by the horizontal scale of the ocean feature. / We investigate the time-scales associated with the adjustment of electromagnetic fields generated by low-frequency ocean currents. We find that the time scales can be quite long, prohibiting a quasistatic assumption in the treatment of the electromagnetic fields generated by the important tidal, inertial, and diurnal-frequency ocean currents. / Three-dimensional explicit time-dependent and steady-state finite-difference numerical models are constructed to study the electromagnetic fields generated by more realistic ocean current and conductivity features. / The ocean currents generate electromagnetic forces on the fluid at the surface of the earth's core. If these forces lead to significant core motion, the effect of the oceans on the generation and variability of the earth's magnetic field may be nontrivial. We estimate the form and magnitude of these forces and make comparisons with observations. Despite many uncertainties, we find evidence to suggest the ocean forcing mechanism may be significant and conclude that this process should be further investigated in the context of a larger study. / This work indicates that it is likely that the geomagnetic record has captured oceanic signals. From a preliminary data analyses we find that aside from the oceanic tidal signals, the magnetic record shows other signals of possible oceanic origin including an apparent correlation between magnetic records from the equatorial Pacific and the Southern Oscillation Index. We discuss the prerequisites that are necessary to extract information about ocean circulation variability from the geomagnetic record.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.39884
Date January 1995
CreatorsTyler, Robert H.
ContributorsMysak, Lawrence (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Atmospheric and Oceanic Sciences.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001474882, proquestno: NN08162, Theses scanned by UMI/ProQuest.

Page generated in 0.0013 seconds