Return to search

Phenotypic plasticity in three species of Cyperus with contrasting mating systems

One postulated prerequisite for phenotypic plasticity to evolve in a population is gene flow among its members. To test this hypothesis, I compared the phenotypic plasticity of 3 congeneric nut-sedges (Cyperus: Cyperaceae) that are similar in size, cohabit sandy beaches, yet differ in their reproductive strategies. Cyperus strigosus reproduces sexually by seed, C. dentatus asexually by bulbils, tubers, and rhizomes, and C. esculentus by a combination of sexual seed and asexual rhizomes and tubers. I predicted that C. strigosus and C. esculentus would be most plastic due to their potential for gene migration, while the asexual C. dentatus would be less plastic. Progeny arrays from nine genotypes of each species were grown in a series of eight environments in growth chambers. I measured 15 vegetative and reproductive traits at maturity. Analysis of covariance indicated a plastic response to the environment for all traits as well as genetic variation in phenotypic plasticity for all but vegetative allocation traits. Indices of plasticity for each genotype were highest for C. esculentus genotypes for vegetative traits and for C. strigosus genotypes for reproductive traits. These results support the hypothesis that non-zero gene migration enables the evolution of phenotypic plasticity.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.55477
Date January 1994
CreatorsAldous, Allison
ContributorsWaterway, Marcia J. (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Plant Science.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001443057, proquestno: AAIMM00000, Theses scanned by UMI/ProQuest.

Page generated in 0.0757 seconds