Return to search

Cell interactions in abnormal neural tube and neural crest cell development of splotch mice

Early identification of mutant embryos prior to the manifestation of a defect facilitates the study of dysmorphogenesis. The In(l)lRk inversion was used as a cytogenetic marker to distinguish embryonic day 9 (D9) splotch (Sp) and splotch-delayed $(Sp sp{d})$ mouse mutants from heterozygous and wild-type littermates, and cellular aspects of abnormal neurulation and NCC migration were examined before inherent neural tube defects (NTDs) and deficiencies in neural crest cell (NCC) derivatives developed. In vitro analysis of NCC emigration from D9 neural tube explants revealed a delay in the release of NCCs from mutant neural tubes compared to controls, suggesting that the primary effect of the mutation was intrinsic to the neuroepithelium. Immunofluorescent localization of the neural cell adhesion molecule (N-CAM) antibody in situ demonstrated an increased intensity of antibody fluorescence in mutant tissue compared to controls, and further characterization by immunoblot analysis showed an altered embryonic N-CAM profile in both Sp and $Sp sp{d}$ mutants at D9 of gestation. The importance of N-CAMs in mediating cellular organization and communication has been well documented, supporting the idea that an alteration in this adhesion mechanism could result in the types of defects seen in splotch locus mouse mutants.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.70336
Date January 1991
CreatorsMoase, Connie E. (Connie Evelyn)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Biology.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001274295, proquestno: AAINN74862, Theses scanned by UMI/ProQuest.

Page generated in 0.0025 seconds