Return to search

Surface irrigation adapted to the land spreading of dairy farm effluent

An important number of Canadian dairy farms manage their manure as solids and in doing so, must handle large volumes of manure seepages and milk house wastewater (dairy farm effluent-DFE). The present project adapted surface irrigation as a more economical and sustainable method of disposing of this large volume of DFE on cropped land near their storage facility. The experimental surface irrigation system consisted of a gated pipe installed perpendicular to the slope of the field allowing the discharged DFE to run down the slope. / The adaptation of the system and the measurement of its environmental impact were conducted on two dairy farms, A and B, in the region South West of Montreal where their DFE were characterized. In 2003 and 2004, DFE was applied on one of two 0.5 and 0.3ha plots, on each farm, to observe losses through the subsurface drainage system, by means of sampling wells, and effects on soil nutrient levels. / The DFE collected in 2002 and 2003 had a lower nutrient content than that collected in 2004 because of higher precipitations. The DFE generally contained between 150-500 mg/L of TKN, 15 to 40 mg/L of TP and 500 to 700 mg/L of TK. / DFE losses through the subsurface drainage system were observed on both farms during each irrigation test. Nevertheless, outlet losses were observed only when irrigating under wet soil conditions or when applying more than 50mm of DFE. Outlet losses represented at the most 1.2% of the total DFE volume applied and 0.32% of the nutrient and bacterial loads. / Although only 65 to 75% of the soil surface was covered by the applied DFE, the irrigation sessions did provide some additional soil moisture for crops, increasing yield by 31% in 2004. Once absorbed by the soil, the applied DFE did not increase the soil nutrient level and variability in the presence of crop. Thus, the DFE contributed to the irrigation and fertilization of the plots. / Surface irrigation to spread low nutrient DFE, as compared to the conventional tanker system reduced the application costs from $3.05/m3, to $0.95/m3.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.83961
Date January 2005
CreatorsAli, Inamullah
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Bioresource Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002293366, proquestno: AAIMR22700, Theses scanned by UMI/ProQuest.

Page generated in 0.0023 seconds