Return to search

Protein structural changes during preparation and storage of surimi

Myofibrillar proteins, the main components that impart functional properties to muscle foods, can undergo denaturation and aggregation during frozen storage. The overall objective of this research was to study the changes in protein structure that are associated with the preparation and frozen storage of surimi. In addition, the relative cryoprotective effects of whey protein concentrate, whey protein isolate, soy protein isolate, flaxseed meal and flaxseed protein were assessed in surimi during storage. / Raw surimi was prepared by repeatedly washing Alaska pollock flesh with chilled water. The product was either slowly frozen or underwent rapid freezing using liquid air; in either case it was then subjected to frozen storage at -20°C for 24 months. Protein structural changes were monitored using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), native-PAGE, Fourier transform infrared/attenuated total reflectance (FTIR/ATR) spectroscopy, and differential scanning calorimetry (DSC). / FTIR/ATR spectroscopy showed that during preparation of surimi the alpha-helix content increased with increased number of washing cycles. DSC results revealed a shift in the thermal transition of actin to a higher temperature during surimi preparation. All electrophoresis, FTIR/ATR spectroscopy and DSC results revealed a loss of myofibrillar proteins from surimi after three washing cycles, suggesting that three washing cycles were adequate to prepare surimi. / Native-PAGE showed no major changes in surimi after 24 months storage at -20°C. SDS-PAGE showed relatively minor changes in protein subunit structure with some loss of the myosin light chains (MLC); myosin heavy chain (MHC), actin and tropomyosin were found to be relatively stable. FTIR/ATR spectroscopy indicated a significant decrease in alpha-helix relative to beta-sheet structure in surimi after 2 years of storage at -20°C. The loss of alpha-helical content was more significant in slowly frozen surimi compared to rapid-frozen surimi samples. DSC results revealed a shift in the thermal transition of actin to lower temperatures during frozen storage of surimi. / Changes in the ratio of alpha-helix to beta-sheet structures suggested that flaxseed protein was the most effective cryoprotectant, followed by whey protein isolate and soy protein isolate, for maintaining protein structure stability during frozen storage. Whey protein concentrate and flaxseed meal showed the least cryoprotective ability. After 15 days storage at 4°C, the SDS-PAGE results showed that flaxseed protein was the only cryoprotectant that prevented the degradation of myosin heavy chain, actin and myosin light chains.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.84297
Date January 2003
CreatorsMoosavi-Nasab, Marzieh
ContributorsAlli, I. (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Food Science and Agricultural Chemistry..)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002085421, proquestno: AAINQ98330, Theses scanned by UMI/ProQuest.

Page generated in 0.0018 seconds