Return to search

Relocalization of eIF4E by its binding partners upon stress

Translation is the vital process by which the information contained in messenger RNAs (mRNA) is used to synthesise proteins. This is a highly regulated process that involves a complex machinery and tight control at every step. In eukaryotes, translation initiation is the rate-limiting step and the most tightly controlled. The translation of an mRNA is preceded by multiple post-transcription steps including, splicing, export and chemical modification including the addition of a 5'-end cap structure. The initiation factor eIF4E binds to this cap structure while in the nucleus, and initiates the translation by recruiting the ribosome after export to the cytoplasm. Controlling the availability of eIF4E within the various compartments of the cell has a direct effect on the efficiency of translation initiation and indirectly on the rate of proliferation of the cell. On the other hand, disturbing the level of eIF4E synthesis could lead to various pathologies especially tumour development. eIF4E requires multiple binding partners to fulfill its mission. The factor 4E-T is involved in eIF4E transport, while eIF4G enhances the binding of eIF4E to the cap structure. eIF4E can be inactivated upon sequestration by the 4E Binding Protein (4E-BP) who competes with eIF4G for binding of eIF4E. / The localization of eIF4E inside the cell is clearly critical for its normal function. It is known that many external stresses can influence cellular translation and this prompted us to investigate the effect of such stresses on the cellular localization of eIF4E and to study the role of eIF4E-binding partners under these conditions. The present work demonstrates that, during heat shock and oxidative stress, 4E-BP plays an essential role in controlling the localization of eIF4E to the stress response cytoplasmic foci, known as the stress granules (SGs). In addition, eIF4E is partially retained in the nucleus during heat shock but not in oxidative stress. These observations suggest that upon stress the cellular translation mechanism is delayed or even stopped by reducing the availability of eIF4E to the translation complex. On the other hand, we show that eIF4E nuclear translocation upon poliovirus infection is correlated with eIF4G cleavage. This translocation could favour the shutdown of host cell protein synthesis by reducing the cap dependent translation and preventing mRNA circularization. / In our study, we focused on the role of eIF4E as a key player for cellular survival under stressful conditions. Therefore, identifying reagents that induce the relocalization of eIF4E to the nucleus or to SGs could help in the development of anti-proliferative drugs. / La traduction est un processus vital par lequel l'information contenue dans l'ARN messager est utilisée pour la synthèse protéique. Chaque étape de ce procédé est strictement régulé grâce à l'implication d'une machinerie complexe hautement contrôlée. Chez les eucaryotes, l'initiation est l'étape limitante et la mieux contrôlée du processus de traduction. Surviennent ensuite, les étapes dites post-traductionnelles qui incluent, l'épissage, l'exportation nucléaire et les modifications biochimiques. Le facteur de transcription eIF4E lie la coiffe du messager en 5' au niveau du noyau, permettant son exportation au cytoplasme et l'initiation de la traduction grâce au recrutement des sous-unites ribosomales. Le contrôle d'eIF4E dans les différentes parties cellulaires est crucial pour l'efficacité traductionnelle, mais génère également un effet indirect sur la prolifération et division cellulaire. Aussi, un défaut de synthèse ou de niveau d'expression d'eIF4E amènent de nombreuses anomalies, spécifiquement lors du développement tumoral. eIF4E requiert de nombreux partenaires pour agir efficacement. Le facteur 4E-T est impliqué dans le transport d'eIF4E tandis que eIF4G favorise sa liaison a la coiffe. eIF4E est connu pour être inactive par séquestration de 4E-BP, principal compétiteur pour la liaison a la coiffe. / La localisation d'eIF4E au sein de la cellule est critique pour son bon fonctionnement. De nombreux facteurs de stress sont connus pour influencer la traduction cellulaire. Je me suis donc concentre à étudier les effets des facteurs de stress dans la localisation cellulaire d'eIF4E et le rôle respectif de chacun de ses partenaires dans ces conditions. J'ai ainsi démontré que durant un choc de chaleur et un stress oxydatif, 4E-BP joue un rôle essentiel dans le contrôle de la localisation d'eIF4E au niveau des granules de stress. De plus, eIF4E est partiellement retenu au noyau lors d'un stress de chaleur mais pas au cours d'un stress oxydatif. Ces observations suggèrent que lors d'un stress, la machinerie traductionnelle est retardée ou arrêtée par une baisse de la disponibilité d'eIF4E a ce complexe protéique. D'un autre coté, j'ai montré que la translocation nucléaire d'eIF4E au cours d'une infection au Poliovirus est corrélée avec le clivage d'eIF4G. Cette translocation pourrait favoriser l'arrêt de la synthèse protéique de la cellule hote en réduisant la traduction dépendant de la coiffe et en prévenant la circularisation du messager. / En conclusion, eIF4E est un élément clé dans la survie cellulaire associée aux conditions de stress. De plus, l'identification de réactifs pouvant induire la relocalisation d'eIF4E au noyau ou aux granules de stress aiderait au développement de composes anti-prolifératifs.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.86718
Date January 2010
CreatorsSukarieh, Rami
ContributorsGerard Pelletier (Internal/Cosupervisor2), Nahum Sonenberg (Internal/Supervisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Biochemistry)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
RelationElectronically-submitted theses.

Page generated in 0.0123 seconds