Return to search

Bioinformatics approaches towards facilitating drug development

Drug development is currently a time-consuming, costly and challenging process. The process typically starts with the identification of a therapeutic target for a given disease. A therapeutic target is some biological molecule and the binding of compounds to target molecules is expected to cause a desired therapeutic effect. That is, target binding compounds have the potential to become drug candidates. However, there is a tendency for many drug candidates to fail during clinical trials, and consequently, very few candidates become approved new drugs. This trend suggests that the early stages of drug development should be improved to provide better drug candidates.The reasons for which a drug candidate may fail during clinical trials include unacceptable toxicity and insufficient efficacy observed in humans. These reasons suggest that the assessments of a compound during the early stages of drug development often inaccurately predict the effect of the compound in humans. One of the main goals of systems biology is to accurately predict how a given biological system responds to perturbations, e.g. treatment with a compound. This suggests that systems biology can help address challenges in drug development. However, there are currently gaps in our knowledge of systems. Here we use machine learning techniques to exploit existing systems data towards filling in these gaps. In particular, we developed a method that uses the occurrences of motifs in protein sequences to predict kinase-substrate interactions. We also developed a method that uses gene expression, protein-protein interaction and phenotype data to predict genetic interactions. These predicted interactions can facilitate the identification of potential therapeutic targets. Ultimately, a better selection of therapeutic targets should lead to better drug candidates.We also address the challenge of developing combinatorial therapies. Despite the fact that combinatorial therapies are advantageous, the scale of the experiments required to search for desirable chemical combinations is currently prohibitive. We therefore developed a method that uses system response data to predict chemical synergies towards facilitating the development of combinatorial therapies.Overall, this thesis shows how computational prediction in a systems biology framework can be used to facilitate and expedite the early stages of drug development. / Le développement des médicaments est actuellement un processus coûteux, difficile, et qui prend beaucoup de temps. Le processus commence généralement par l'identification d'une cible thérapeutique pour une maladie spécifique. Une cible thérapeutique est une molécule biologique et l'attachement des composés aux molécules cibles est supposé causer un effet thérapeutique. Donc, les composés qui attachent aux cibles ont le potentiel de devenir des candidats médicaments. Toutefois, beaucoup de candidats médicaments ont tendance à échouer pendant les essais cliniques, et par conséquence, très peu de candidats deviennent nouveaux médicaments approuvés. Cette tendance suggère que les premières étapes du développement de médicaments doit être amélioré afin de fournir des candidats médicaments de meilleure qualité.Les raisons pour lesquelles un candidat médicament peut échouer pendant les essais cliniques incluent une toxicité inacceptable et une éfficacité insuffisante observés chez les humains. Ces raisons suggèrent que les évaluations d'un composé pendant les premières étapes du développement de médicaments mal prédirent l'effet du composé chez les humains. Un des principaux objectifs de la biologie des systèmes est de prédire avec précision comment un système biologique répond à des perturbations, par exemple, un traitement avec un composé. Ceci suggère que la biologie des systèmes peut aider à aborder les défis du développement de médicaments. Toutefois, il existe actuellement des lacunes dans notre connaissance des systèmes. Ici, nous utilisons des techniques d'apprentissage automatique pour exploiter l'information existantes des systèmes pour combler ces lacunes. En particulier, nous avons développé une méthode qui utilise des occurrences des motifs dans les séquences de protéine pour prédire des interactions kinase-substrat. Nous avons aussi développé une méthode qui utilise d'expression des gènes, des interactions entre les protéines et d'information des phénotypes pour prédire des interactions génétiques. Ces interactions prédites peuvent faciliter l'identification des cibles thérapeutiques potentielles. En fin de compte, une meilleure sélection des cibles thérapeutiques devrait entraîner des candidats médicaments de meilleure qualité.Nous avons aussi abordé le défi de développer des thérapies combinatoires. Malgré le fait que les thérapies combinatoires sont avantageuses, l'ampleur des expériences nécessaires à la recherche de combinaisons chimiques souhaitables est actuellement prohibitif. Donc, nous avons développé une méthode qui utilise d'information de réponse des systèmes pour prédire des synergies chimiques en vue de faciliter le développement de thérapies combinatoires.Dans l'ensemble, cette thèse montre comment de calcul de prédiction dans une structure de biologie des systèmes peut être utilisés pour faciliter et accélérer les premières étapes du développement de médicaments.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.96984
Date January 2011
CreatorsLee, Anna
ContributorsMichael Trevor Hallett (Internal/Supervisor), Sarah Jenna (Internal/Cosupervisor2)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (School of Computer Science)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
RelationElectronically-submitted theses.

Page generated in 0.002 seconds