Return to search

Catalytic partial oxidation of methyl acetate as a model to investigate the conversion of methyl esters to hydrogen

Rhodium, platinum, copper, palladium, and rhodium-ceria catalysts were investigated in the catalytic partial oxidation of methyl acetate, the simplest methyl ester, to better understand the conversion of biodiesel to hydrogen. Only rhodium and rhodium-ceria catalysts allowed for an autothermal reactor operation. Both catalysts were active in producing hydrogen, carbon monoxide, water, and carbon dioxide, although the rhodium-ceria catalyst showed the greater methyl acetate conversion and the greater hydrogen and carbon monoxide selectivities. A low C/O feed ratio favored the methyl acetate conversion, the hydrogen selectivity, and the carbon monoxide selectivity. Furthermore, a high gas hourly space velocity also improved the reactor performance. According to the experimental data, it appears that the oxidation of methyl acetate forms carbon monoxide and water as a primary step, instead of carbon dioxide and water as with the combustion reaction. In general, methyl acetate does not yield more synthesis gas than biodiesel. The methyl ester functional group limits the hydrogen yield and hence new catalysts should be developed and investigated in order to better target the decomposition of methyl esters to hydrogen.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.99783
Date January 2007
CreatorsNguyen, Betty Ngoc Thy, 1982-
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Engineering (Department of Chemical Engineering.)
Rights© Betty Ngoc Thy Nguyen, 2007
Relationalephsysno: 002612754, proquestno: AAIMR32611, Theses scanned by UMI/ProQuest.

Page generated in 0.0022 seconds