Comportement des systèmes de référence quantiques pour le moment cinétique

Le domaine des systèmes de référence quantiques, dont les dernière avancées sont brièvement présentées au chapitre 1, est extrêmement pertinent à la compréhension de la dégradation
des états quantiques et de l’évolution d’instruments de mesures quantiques. Toutefois, pour
arriver à comprendre formellement ces avancées et à apporter une contribution originale au
domaine, il faut s’approprier un certain nombre de concepts physiques et mathématiques, in-
troduits au chapitre 2. La dégradation des états quantiques est très présente dans le contrôle
d’états utiles à l’informatique quantique. Étant donné que ce dernier tente de contrôler des sys-
tèmes à deux états, le plus souvent des moments cinétiques, l’analyse des systèmes de référence
quantiques qui les mesurent s’avère opportune. Puisque, parmi les plus petits moments ciné-
tiques, le plus connu est de s = 1 et que son état le plus simple est l’état non polarisé, l’étude 2
du comportement d’un système de référence mesurant successivement ce type de moments ci- nétiques constitue le premier pas à franchir. C’est dans le chapitre 3 qu’est fait ce premier pas et il aborde les questions les plus intéressantes, soit celles concernant l’efficacité du système de référence, sa longévité et leur maximum. La prochaine étape est de considérer des états de moments cinétiques polarisés et généraux, étape qui est abordée dans le chapitre 4. Cette fois, l’analyse de la dégradation du système de référence est un peu plus complexe et nous pouvons l’inspecter approximativement par l’évolution de certains paramètres pour une certaine classe d’états de système de référence. De plus, il existe une interaction entre le système de référence et le moment cinétique qui peut avoir un effet sur le système de référence tout à fait comparable à l’effet de la mesure. C’est cette même interaction qui est étudiée dans le chapitre 5, mais, cette fois, pour des moments cinétiques de s = 1. Après une comparaison avec la mesure, il devient manifeste que les ressemblances entre les deux processus sont beaucoup moins apparentes, voire inexistantes. Ainsi, cette ressemblance ne semble pas générale et semble accidentelle lorsqu’elle apparaît. / The field of quantum reference frames, which recent progress is briefly presented in chap-
ter 1, is extremely relevant when it comes to understanding the deterioration of quantum states
and the evolution of quantum measurement instruments. However, to fully understand these
advances and to be able to bring an original contribution to this field, one must first understand
a number of concepts in physics and mathematics. These concepts are explained in chapter 2.
Since the deterioration of quantum states is very present when controlling useful states in quan-
tum computing, and since quantum computing attempts to control two-states systems, often
angular momenta, analyzing quantum reference frames proves to be relevant. Having s = 1 as 2
the smallest known angular momentum, and since its simplest state is the unpolarized state, the
study of a reference frame behavior that measures successively this type of angular momentums
is the first step to be taken (chapter 3). The most interesting questions concern the efficiency of
the reference frame, its longevity, and the optimization of these two quantities. The next step is
to consider polarized and general angular momentum states (chapter 4). This time, analyzing
the deterioration of the reference frame proves to be more complex, and can be examined in
an approximate manner by looking at the evolution of certain parameters given for a certain
class of states of reference frames. Furthermore, the existence of an interaction between the
reference frame and the angular momentum can affect the reference frame approximatively as
much as the measuring it does. It is this very interaction that is studied in chapter 5, but this
time, for s = 1 angular momenta. Comparing this interaction with the measurement shows very
clearly that the similarities between the two processes are a lot less visible than with s = 1 , and 2
even perhaps nonexistent. Therefore, the similarity does not seem to be general and appears to be accidental when it is significant.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMU.1866/8572
Date04 1900
CreatorsPineault, Mychel
ContributorsMacKenzie, Richard
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageFrench
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.0067 seconds