Return to search

Lasers à fibre à synchronisation modale passive par rotation non linéaire de la polarisation. Dynamique en régime multi-impulsionnel

Les travaux présentés dans cet ouvrage concernent l’étude de la dynamique des lasers à fibre à synchronisation modale passive. Le mécanisme qui assure la formation des impulsions repose sur un principe d’interférométrie non linéaire (i.e. rotation non linéaire de la polarisation). Or, ce mécanisme possède la particularité de voir son action être renversée lorsque la puissance des impulsions dépasse un certain seuil, i.e. les ailes observent un gain plus élevé que le centre de l’impulsion. Le train d’impulsions devient alors instable, une situation généralement suivie de l’apparition d’une ou plusieurs impulsions additionnelles. Dans ce nouveau régime, il est courant d’observer la formation de groupes d’impulsions cohérentes. La nature de l’interaction en jeu diffère selon que la dispersion observée par les impulsions est plus ou moins élevée. Dans le cas où la dispersion résiduelle de la cavité permet la propagation d’impulsions solitoniques, il a été montré que ce phénomène est relié à l’interaction non linéaire entre les impulsions et les ondes dispersives résonantes émises suite aux perturbations périodiques encourues par les impulsions suivant leur propagation dans la cavité. Toutefois, dans le cas où des milieux de dispersion positive et négative sont disposés dans la cavité pour faire en sorte de réduire la dispersion résiduelle de celle-ci, les bandes latérales associées aux ondes dispersives résonantes s’en trouvent fortement atténuées en raison de la dérive de fréquence (importante) observée par les impulsions dans chaque portion de la cavité. En fait, on montre que la formation des groupes d’impulsions résulte plutôt de l’interaction directe entre les impulsions puisque celles-ci sont amenées à se superposer partiellement sur une portion significative de la cavité. Également, dans ce même régime, on rapporte l’observation de collisions qui se produisent entre des groupes d’impulsions voyageant avec des vitesses différentes. Divers scénarios sont observés suivant les modifications plus ou moins importantes entraînées par la collision. En effet, il n’est pas nécessaire que l’énergie et la quantité de mouvement soient conservées lors des collisions entre les impulsions dans le laser puisqu’il s’agit d’un système dissipatif. En outre, dans le cas où les collisions se répètent sur une base périodique, l’acquisition d’une séquence d’autocorrélations a permis de mettre en évidence la dynamique particulière qui caractérise le processus de collision. / The work presented herein is primarily concerned with the dynamics of passively mode-locked fiber lasers. The mechanism used for achieving pulse emission relies on nonlinear interferometry (i.e. nonlinear polarization rotation). However, the same mechanism acts as a limiter whenever the pulse power is increased above a given amount, i.e. the wings are subject to a higher gain than the peak of the pulse. The pulse train then becomes unstable and the creation of one or more additional pulses follows from this instability. In this new regime, it is not unusual to observe the formation of coherent states of bound pulses. The nature of the interaction responsible for this phenomenon depends on the amount of dispersion experienced by the pulses along the laser cavity. In the case of a cavity that sustains the formation of solitons, the occurrence of pulse bound states was shown to result from the nonlinear interaction between the pulses and the resonant dispersive waves emitted as a result of the periodic perturbations the solitons undergo on successive cavity round trips. In contrast, for the case of a cavity built from positive and negative dispersion fibers such as to reduce the net dispersion, the sidebands related to the resonant dispersive waves are greatly reduced because of the significant frequency chirp the pulses acquire along each fiber segment. Thus we show here that the formation of pulse bound states results instead from the direct interaction between the multiple pulses since the pulses interfere with one another on a significant part of the laser cavity. In addition, in the same regime, we report the observation of collisions occurring between pulse bound states traveling with different group velocities. This process may result in several outcomes, depending on the changes the bound states undergo during the collisions. In fact, energy and momentum need not be conserved in the process since the laser is a dissipative system. Finally, in the case of collisions that repeat periodically, the acquisition of a sequence of autocorrelations allowed us to verify the peculiar dynamics that characterizes the collision process.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QQLA.2007/24719
Date08 1900
CreatorsRoy, Vincent
ContributorsPiché, Michel
PublisherUniversité Laval
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation
Formattext/html, application/pdf
Rights© Vincent Roy, 2007

Page generated in 0.0027 seconds