Abstract: Originally designed for the study of strong electronic correlations in model Hamiltonians, dynamical mean field theory (DMFT) has become, in combination with density functional theory (DFT), a powerful tool for ab initio simulations of real materials. At the heart of DMFT lies the solution of a quantum impurity problem. While only the continuous-time quantum Monte Carlo (CT-QMC) impurity solvers yield (statistically) exact solutions of a general impurity problem, they are quite complex and computationally expensive. Hence, in this thesis we are interested in improving the CT-QMC impurity solvers. After a short introduction to DMFT and its cluster extensions, we begin by reviewing two of the CT-QMC impurity solvers, the interaction expansion or “Rubtsov” solver (CT- INT) and the hybridization expansion solver (CT-HYB). Focussing on the latter, which is the algorithm of choice within real material simulations, we then show how to reduce a sign problem, allowing us to address the unusual criticality found in layered organic superconductors. With high-T c superconductivity as example, we further discuss how to ensure ergodicity of the CT-HYB solver in the context of broken symmetries. Finally, algorithmic optimizations of CT-HYB are presented and combined, leading to speedups of up to 500 within the context of real material simulations. // Résumé: Initialement conçue pour traiter les fortes corrélations électroniques dans des hamiltoniens modèles, la théorie du champ moyen dynamique (DMFT) est devenue, en combinaison avec la théorie de la densité fonctionnelle (DFT), un outil puissant pour la simulation de matériaux réels. Au cœur de la DMFT se trouve la solution d'un modèle d'impureté quantique. Seulement les solutionneurs d'impureté Monte Carlo en temps continu (CT-QMC) donnent des solutions exactes. En même temps, ces solutionneurs sont plutôt complexes et gourmands en temps de calcul. Le but de cette thèse est donc d'améliorer les solutionneurs d'impureté CT-QMC. Après une courte introduction à la DMFT et à ses extensions pour les amas, on commence par une revue de deux des solutionneurs CT-QMC, celui en développement d'interaction ou de "Rubtsov" (CT-INT) et celui en développement d'hybridation (CT-HYB). Mettant l'accent sur le dernier, qui est l'algorithme de choix dans le cadre des matériaux réels, on montre alors comment réduire un problème de signe, nous permettant ainsi de traiter la criticalité inhabituelle des organiques en couche. Avec la supraconductivité à haute température critique comme exemple, on discute ensuite comment assurer l'ergodicité du solutionneur CT-HYB dans le cadre des symétries brisées. Finalement, des optimisations algorithmiques sont présentées et combinées, amenant à des accélérations allant jusqu'à un facteur de 500 dans le contexte des matériaux réels.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QSHERU.89 |
Date | January 2014 |
Creators | Sémon, Patrick |
Contributors | Tremblay, André-Marie |
Publisher | Université de Sherbrooke |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | French |
Type | Thèse |
Rights | ©PatrickSémon |
Page generated in 0.0034 seconds