Return to search

A comparative study of metaheuristic algorithms for the fertilizer optimization problem

Hard combinatorial optimization (CO) problems pose challenges to traditional algorithmic solutions. The search space usually contains a large number of local optimal points and the computational cost to reach a global optimum may be too high for practical use. In this work, we conduct a comparative study of several state-of-the-art metaheuristic algorithms for hard CO problems solving. Our study is motivated by an industrial application called the Fertilizer Blends Optimization. We focus our study on a number of local search metaheuristics and analyze their performance in terms of both runtime efficiency and solution quality. We show that local search granularity (move step size) and the downhill move probability are two major factors that affect algorithm performance, and we demonstrate how experimental tuning work can be applied to obtain good performance of the algorithms. <p>Our empirical result suggests that the well-known Simulated Annealing (SA) algorithm showed the best performance on the fertilizer problem. The simple Iterated Improvement Algorithm (IIA) also performed surprisingly well by combining strict uphill move and random neighborhood selection. A novel approach, called Delivery Network Model (DNM) algorithm, was also shown to be competitive, but it has the disadvantage of being very sensitive to local search granularity. The constructive local search method (GRASP), which combines heuristic space sampling and local search, outperformed IIA without a construction phase; however, the improvement in performance is limited and generally speaking, local search performance is not sensitive to initial search positions in our studied fertilizer problem.
Date31 August 2006
CreatorsDai, Chen
ContributorsSpiteri, Raymond J., Osgood, Nathaniel, Horsch, Michael C.
PublisherUniversity of Saskatchewan
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Detected LanguageEnglish
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0026 seconds